关于编码问题:‘utf-8’ codec can’t decode byte 0xb7 in position 0: invalid start byte参见这篇博文:https://www.cnblogs.com/xiaolan-Lin/p/11653432.html
代码来自于这篇博文:https://blog.csdn.net/lom9357bye/article/details/79058946?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522158937528619724839264541%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.57674%2522%257D&request_id=158937528619724839264541&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_v2~rank_v25-2-79058946.nonecase&utm_term=%E5%9F%BA%E4%BA%8E%E6%83%85%E6%84%9F%E8%AF%8D%E5%85%B8
程度词要自己标注权重,可以把txt的文件复制到excel,新建一行再自动填充:
词典数据来自于这里:https://download.csdn.net/download/siyanyu/9880970
网上找代下下载的词典,需要的话可以点击网盘:链接:https://pan.baidu.com/s/1oVXtjtD9pTLP5Y277He-IQ
提取码:6h98
最后附上代码:
# -*- coding: utf-8 -*-
"""
Created on Wed May 13 21:10:58 2020
1、情感词典:BosonNLP情感词典是从微博、新闻、论坛等数据来源的上百万篇情感标注数据当中
自动构建的情感极性词典。因为标注包括微博数据,该词典囊括了很多网络用语及非正式简称,
对非规范文本也有较高的覆盖率。该情感词典可以用于构建社交媒体情感分析引擎,负面内容发现等应用。
2、停用词
3、否定词
4、程度副词
@author: 谢蕾
"""
from collections import defaultdict
import os
import re
import jieba
import codecs
import xlrd
import datetime
from xlrd import xldate_as_tuple
from openpyxl import Workbook
def handle_date(date):
tuple = xldate_as_tuple(date, 0)
# print(tuple)
# excel_datetime=datetime.datetime(*tuple)
# print(excel_datetime)
return tuple
def seg_word(sentence):
"""使用jieba对文档分词"""
seg_list = jieba.cut(sentence)
seg_result = []
for w in seg_list:
seg_result.append(w)
# 读取停用词文件
stopwords = set()
fr = codecs.open('停用词.txt', 'r', 'utf-8')
for word in fr:
stopwords.add(word.strip())
fr.close()
# 去除停用词
return list(filter(lambda x: x not in stopwords, seg_result))
def classify_words(word_dict):
"""词语分类,找出情感词、否定词、程度副词"""
# 读取情感字典文件
sen_file = open('情感词1.0.txt', 'r+', encoding='utf-8')
# 获取字典文件内容
sen_list = sen_file.readlines()
# 创建情感字典
sen_dict = defaultdict()
# 读取字典文件每一行内容,将其转换为字典对象,key为情感词,value为对应的分值
for s in sen_list:
# 每一行内容根据空格分割,索引0是情感词,索引1是情感分值
sen_dict[s.split(' ')[0]] = s.split(' ')[1]
# 读取否定词文件
not_word_file = open('否定词.txt', 'r+', encoding='unicode_escape')
# 由于否定词只有词,没有分值,使用list即可
not_word_list = not_word_file.readlines()
# 读取程度副词文件
degree_file = open('程度词.txt', 'r+', encoding='utf-8')
degree_list = degree_file.readlines()
degree_dic = defaultdict()
# 程度副词与情感词处理方式一样,转为程度副词字典对象,key为程度副词,value为对应的程度值
for d in degree_list:
degree_dic[d.split(',')[0]] = d.split(',')[1]
# 分类结果,词语的index作为key,词语的分值作为value,否定词分值设为-1
sen_word = dict()
not_word = dict()
degree_word = dict()
# 分类
for word in word_dict.keys():
if word in sen_dict.keys() and word not in not_word_list and word not in degree_dic.keys():
# 找出分词结果中在情感字典中的词
sen_word[word_dict[word]] = sen_dict[word]
elif word in not_word_list and word not in degree_dic.keys():
# 分词结果中在否定词列表中的词
not_word[word_dict[word]] = -1
elif word in degree_dic.keys():
# 分词结果中在程度副词中的词
degree_word[word_dict[word]] = degree_dic[word]
sen_file.close()
degree_file.close()
not_word_file.close()
# 将分类结果返回
return sen_word, not_word, degree_word
def list_to_dict(word_list):
"""将分词后的列表转为字典,key为单词,value为单词在列表中的索引,索引相当于词语在文档中出现的位置"""
data = {}
for x in range(0, len(word_list)):
data[word_list[x]] = x
return data
def get_init_weight(sen_word, not_word, degree_word):
# 权重初始化为1
W = 1
# 将情感字典的key转为list
sen_word_index_list = list(sen_word.keys())
if len(sen_word_index_list) == 0:
return W
# 获取第一个情感词的下标,遍历从0到此位置之间的所有词,找出程度词和否定词
for i in range(0, sen_word_index_list[0]):
if i in not_word.keys():
W *= -1
elif i in degree_word.keys():
# 更新权重,如果有程度副词,分值乘以程度副词的程度分值
W *= float(degree_word[i])
return W
def socre_sentiment(sen_word, not_word, degree_word, seg_result):
"""计算得分"""
# 权重初始化为1
W = 1
score = 0
# 情感词下标初始化
sentiment_index = -1
# 情感词的位置下标集合
sentiment_index_list = list(sen_word.keys())
# 遍历分词结果(遍历分词结果是为了定位两个情感词之间的程度副词和否定词)
for i in range(0, len(seg_result)):
# 若是程度副词
if i in degree_word.keys():
W*=degree_word[i]
# 若是否定词
elif i in not_word.keys():
# print(i)
W*=-1
elif i in sen_word.keys():
score+=float(W)*float(sen_word[i])
W=1
# 定位到下一个情感词
if sentiment_index < len(sentiment_index_list) - 1:
i = sentiment_index_list[sentiment_index + 1]
return score
# 计算得分
def setiment_score(sententce):
# 1.对文档分词
seg_list = seg_word(sententce)
# 2.将分词结果列表转为dic,然后找出情感词、否定词、程度副词
sen_word, not_word, degree_word = classify_words(list_to_dict(seg_list))
# 3.计算得分
score = socre_sentiment(sen_word, not_word, degree_word, seg_list)
return score
# # 测试
# print(setiment_score("我今天心情很糟糕也不开心"))
workbook = Workbook()
result_sheet = workbook.active
result_sheet.title = "随便"
sheets = xlrd.open_workbook(r'D:\answer.xls').sheets()
#先用第一个sheet试试水
for i in range(1):
sheet = sheets[i]
for j in range(1,sheet.nrows):
a = []
# print(sheet.cell_value(i,3))
create_time = datetime.datetime(*(handle_date(sheet.cell_value(j,3))[:3]))#精确到天
answer = sheet.cell_value(i,4)
a.append(create_time)
a.append(setiment_score(answer))
result_sheet.append(a)
workbook.save("情感数据.xlsx")
原文链接:https://blog.csdn.net/weixin_46660582/article/details/106108514