(计算机毕设选题推荐)基于pyecharts对知乎热点问题的数据分析与研究

摘要

本文旨在通过利用Python的pyecharts库对知乎平台上的热点问题进行深度数据分析与研究。知乎作为国内知名的知识分享社区,其热点问题不仅反映了用户关注的焦点,也蕴含了丰富的社会、经济、文化等信息。本文首先爬取了知乎平台上的热点问题数据,包括问题标题、回答数量、关注人数、点赞数等关键指标。随后,运用pyecharts库对收集到的数据进行可视化处理,包括热点问题的时间分布、关注度变化、用户行为分析等。通过数据分析,本文揭示了知乎热点问题的形成机制、演变规律以及用户兴趣偏好,为社交媒体分析、舆情监测等领域提供了有价值的参考。

关键字:pyecharts,知乎,热点问题,数据分析,可视化

2. 英文摘要及关键字

Abstract

This paper focuses on conducting a comprehensive data analysis and research on trending topics from Zhihu, a renowned knowledge-sharing community in China, utilizing the pyecharts library in Python. Zhihu's trending topics not only mirror users' focal points but also encapsulate rich social, economic, and cultural information. By scraping data on trending topics, including question titles, answer counts, followers, upvotes, and other key indicators, this study leverages pyecharts for data visualization. The analysis encompasses temporal distributions, changes in attention, and user behavior patterns related to these topics. The findings shed light on the formation mechanisms, evolution patterns, and user preferences regarding Zhihu's trending topics, offering valuable insights for social media analysis, public opinion monitoring, and related fields.

Keywords: pyecharts, Zhihu, trending topics, data analysis, visualization

目录

  1. 引言
    • 研究背景与意义
    • 研究目标与问题定义
    • 研究方法与工具介绍(pyecharts)
  2. 数据收集与处理
    • 数据来源与爬取策略
    • 数据清洗与预处理
    • 数据集描述
  3. 知乎热点问题可视化分析
    • 热点问题时间分布分析
    • 关注度变化趋势分析
    • 用户行为特征分析(如点赞、回答行为)
    • 热点话题类别与主题分析
  4. 热点问题形成机制与影响因素探讨
    • 社交媒体话题传播模型
    • 外部事件对热点话题的影响
    • 用户群体特征对热点话题的贡献
  5. 结论与展望
    • 研究总结
    • 研究贡献与局限性
    • 未来研究方向
  6. 参考文献

4. 参考文献(10篇中文论文示例)

  1. 金淳恩、陈士豪. 基于大数据的社交媒体热点话题挖掘与分析[J]. 情报杂志, 2022, 41(3): 123-130.
  2. 茹耀靖、陈展礼. 社交媒体中用户行为模式的可视化研究[J]. 计算机科学, 2021, 48(6): 209-215.
  3. 陈浩, 赵敏. 利用Python进行网络数据爬取与可视化分析[J]. 数据分析与知识发现, 2020, 4(10): 67-74.
  4. 周涛, 吴昊. 社交媒体中的热点话题识别与趋势预测[J]. 信息系统学报, 2019, 13(2): 34-45.
  5. 杜家玮、李晋丰. 基于文本挖掘的社交媒体舆情分析[J]. 现代情报, 2018, 38(11): 56-63.
  6. 张伟强, 李晓红. 数据可视化技术在网络舆情分析中的应用[J]. 情报科学, 2017, 35(9): 140-145.
  7. 周晴意、左智超. 社交媒体用户行为分析与建模[J]. 计算机科学, 2016, 43(12): 22-28.
  8. 陈晓, 王琛. 知乎社区中的知识共享与传播研究[J]. 图书馆论坛, 2015, 35(6): 1-7.
  9. 孙静, 蒋卫丽. 大数据环境下社交媒体热点话题检测[J]. 数据分析与知识发现, 2014, 30(10): 23-30.
  10. 王勇, 李平. 基于情感分析的社交媒体热点话题态度倾向研究[J]. 情报学报, 2013, 32(5): 495-503.

部分成果展示

联系我们

如果需要相关论文或者源码可以添加VX联系我们哦~
专注计算机毕设多年的工作室~

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值