c罩杯尺码_教你三步正确测量内衣尺码!

本文分享了内衣设计师推荐的三步测量内衣尺码方法。通过使用软尺测量上下围尺寸,并计算差值,可以准确地找到适合自己的内衣尺寸。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

d8f673c739427fb0cf51f75a4ef6a25c.png

干货!✅教你三步正确测量内衣尺码!

内衣设计师都在用的测量方法‼️选择适合自己的内衣,首先要确定自己的码数哦。

‍♀️有的小仙女常年在实体店买内衣,依赖柜姐的“目测、手摸”或者盲试❌所以对自己的码数一知半解。

其实正确的尺码必须靠测量出来的,下面和大家分享!

▫️道具:软尺(买衣服会送的那种就可以)

第一步,量上下。

▫️赤身状态,上半身倾斜45°,软尺绕过峰点(乳头)一圈,得出上围数值,如88cm

▫️身体直立,软尺绕过乳房根部一圈,得出下围数值,如75cm

▫️Ps:为了测量更精准,可以吸气、呼气各测一次,取平均值

b3188a2720e570d38c710ea0890aa74c.png

第二步,算

▫️上面得出的下围数值,对应的就是内衣尺码中的数值,如75、80;⭐️如果数值是在某个区间内的,取大。如78cm,建议选80

罩杯大小=上围数值-下围数值,如88cm-75cm=13cm

81d7116046266a2e9bf5416854afc497.png

第三步,对

上下围差13cm对应表中的数值就是,C杯

所以要选的内衣码数就是:80C/36C

只要3步,学会了吗? 学会了给我点个赞哦~ 以后买内衣,就不怕选错码数了!

8b731e6f4f276d9fc86ebb70771c34a8.png
数据集介绍:类别动物目标检测数据集 一、基础信息 数据集名称:类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 场景适配性: 数据来源涵盖航拍影像、地面监控等维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物场景目标检测数据集 一、基础信息 数据集名称:陆生动物场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供动物识别训练数据 育科研应用: 适用于动物行为学研究和计算机视觉学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景样性突出: 包含航拍视角、近距离特写、群体活动等种拍摄角度和场景 规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值