空间计量模型_截面数据空间计量模型空间滞后模型及Stata操作和应用(spatreg及spregsar汇总及对比)...

计量经济学服务中心 专辑汇总 !计量百科 · 资源·干货: Stata    | Python   | Ma tlab    | Eviews   | R   Geoda   | A rcGis   | GeodaSpace   | SPSS   一文读懂     | 数据资源     | 回归方法   | 网络爬虫                                                                  限回归     | 工具变量    | 内生性     | 空间计量   果推断    | 合成控制法     | 倾向匹配得分      | 断点回归    | 双重差     面板数据   |  动态面板数据

空间计量经济学创造性地处理了经典计量方法在面对空间数据时的缺陷,考察了数据在地理观测值之间的关联。近年来在人文社会科学空间转向的大背景下,空间计量已成为空间综合人文学和社会科学研究的基础理论与方法,尤其在区域经济、房地产、环境、人口、旅游、地理、政治等领域,空间计量成为开展定量研究的必备技能。

1

横截面空间计量及Stata应用——空间滞后模型

空间滞后模型(Spatial Lag Model,SLM)主要是探讨各变量在一地区是否有扩散现象(溢出效应)。其模型表达式为:参数 反映了自变量对因变量的影响,空间滞后因变量 是一内生变量,反映了空间距离对区域行为的作用。区域行为受到文化环境及与空间距离有关的迁移成本的影响,具有很强的地域性(Anselin et al.,1996)。由于SLM模型与时间序列中自回归模型相类似,因此SLM也被称作空间自回归模型(Spatial Autoregressive Model,SAR)。

2

命令安装介绍

spregsar:最大似然估计空间滞后截面回归模型

由于是一个外部命令,因此需要先安装下载。

help spregsar*或者findit spregsarssc install spregsar

03d53f34d785a0b14b5a443d870b8d22.png

44301ab4d93628640ee3665df3a4cb22.png

语法格式为:

 spregsar depvar indepvars [weight] , wmfile(weight_file)    [ lmspac lmhet lmnorm diag tests stand inv inv2      dist(norm|exp|weib) mfx(lin, log) mhet(varlist) predict(new_var)     resid(new_var)      iter(#) tech(name) ll(real 0) coll zero tolog nolog robust     noconstant      level(#) vce(vcetype) maximize other maximization options ]

选项含义为:

depvar表示被解释变量

indepvars 表示解释变量

wmfile(weight_file) 表示导入权重矩阵

inv使用逆标准化权重矩阵(1/W)

inv2   使用反平方标准化权重矩阵(1/W^2)

zero将缺失值的观测值转换为0

coll 保持共线变量;默认移除共线变量

nolog不显示迭代次数
robust表示Huber-White标准误差

level,表示置信区间水平;默认是95%水平

cf0f3b2171dffe0930e9ff8a3404c898.png

3

操作案例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值