三元一次方程组算法_加拿大数学竞赛题,看似解方程组,只有1%的学生得满分,的确很难...

本文分享一道加拿大数学竞赛的三元一次方程组试题,其难度较大,满分率仅1%。回顾了三元一次方程及方程组的概念、解方程组的基本思路和步骤,指出本题不能用一般方法,需分x、y、z都为0和都不为0两种情况求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

同学们好,今天老师为大家分享一道加拿大的数学竞赛题。这道题属于解三元一次方程组,但是难度却比大家平常接触到的试题大很多,因此这道题的满分率只有1%。接下来我们就一起来看看这道试题吧:

7363c7c4e18347bf6b7935bb1f0ed54c.png

试题

怎么样,看到题目之后,同学们有没有解题思路呢?既然这是一道关于三元一次方程组的试题,那么我们就先来一起回顾一下,关于解三元一次方程组试题的思路及步骤吧。

三元一次方程及三元一次方程组的概念:

三元一次方程:我们把含有三个未知数,并且含未知数的项的次数都是1的方程,叫做三元一次方程;三元一次方程组:含有三个未知数,并且含有未知数的项的次数都是1的方程组,叫做三元一次方程组.三元一次方程组中各方程的公共解叫做这个三元一次方程组的解。

解三元一次方程组的基本思路及步骤:

解三元一次方程组的基本思路也是消元,其具体步骤如下:1.首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;2.然后解这个二元一次方程组,求出这两个未知数的值;3.再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程;4.解这个一元一次方程,求出第三个未知数的值;5.最后将求得的三个未知数的值用大括号合写在一起即可。

很显然,对于这道题,我们就不能用一般的方法去解。首先这道题可以分情况来讨论,即x、y、z都为0,因为x=y=z=0符合方程组的解;第二种情况就是x、y、z都不为0,并且对原方程组进行变形,并构造出完全平方式。具体解题思路如下:

9bca6eb75f43eb3b24b48eafff7c1b33.png

解题步骤

今天的试题分享就到这里,不知道同学们有没有理解并掌握这道题呢?欢迎大家下方留言或评论,来一起说说你们的想法或建议吧!如果大家还有更好的解题思路,也欢迎分享出来,我们共同学习进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值