python怎么三维画图_Python三维绘图--Matplotlib

Python三维绘图

在遇到三维数据时,三维图像能给我们对数据带来更加深入地理解。python的matplotlib库就包含了丰富的三维绘图工具。

1.创建三维坐标轴对象Axes3D

创建Axes3D主要有两种方式,一种是利用关键字projection='3d'l来实现,另一种则是通过从mpl_toolkits.mplot3d导入对象Axes3D来实现,目的都是生成具有三维格式的对象Axes3D.

#方法一,利用关键字

from matplotlib import pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

#定义坐标轴

fig = plt.figure()

ax1 = plt.axes(projection='3d')

#ax = fig.add_subplot(111,projection='3d') #这种方法也可以画多个子图

#方法二,利用三维轴方法

from matplotlib import pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

#定义图像和三维格式坐标轴

fig=plt.figure()

ax2 = Axes3D(fig)

2.三维曲线和散点

随后在定义的坐标轴上画图:

import numpy as np

z = np.linspace(0,13,1000)

x = 5*np.sin(z)

y = 5*np.cos(z)

zd = 13*np.random.random(100)

xd = 5*np.sin(zd)

yd = 5*np.cos(zd)

ax1.scatter3D(xd,yd,zd, cmap='Blues') #绘制散点图

ax1.plot3D(x,y,z,'gray') #绘制空间曲线

plt.show()

20180921111106449

3.三维曲面

下一步画三维曲面:

fig = plt.figure() #定义新的三维坐标轴

ax3 = plt.axes(projection='3d')

#定义三维数据

xx = np.arange(-10,10,100)

yy = np.arange(-10,10,100)

X, Y = np.meshgrid(x, y)

Z = np.sin(X)+np.cos(Y)

#作图

ax3.plot_surface(X,Y,Z,cmap='rainbow')

#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap='rainbow) #等高线图,要设置offset,为Z的最小值

plt.show()

20180921112526358

如果加入渲染时的步长,会得到更加清晰细腻的图像:

ax3.plot_surface(X,Y,Z,rstride = 1, cstride = 1,cmap='rainbow'),其中的row和cloum_stride为横竖方向的步长。

20180921112905411

4.等高线

同时还可以将等高线投影到不同的面上:

from matplotlib import pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

#定义坐标轴

fig4 = plt.figure()

ax4 = plt.axes(projection='3d')

#生成三维数据

xx = np.arange(-5,5,0.1)

yy = np.arange(-5,5,0.1)

X, Y = np.meshgrid(xx, yy)

Z = np.sin(np.sqrt(X**2+Y**2))

#作图

ax4.plot_surface(X,Y,Z,alpha=0.3,cmap='winter') #生成表面, alpha 用于控制透明度

ax4.contour(X,Y,Z,zdir='z', offset=-3,cmap="rainbow") #生成z方向投影,投到x-y平面

ax4.contour(X,Y,Z,zdir='x', offset=-6,cmap="rainbow") #生成x方向投影,投到y-z平面

ax4.contour(X,Y,Z,zdir='y', offset=6,cmap="rainbow") #生成y方向投影,投到x-z平面

#ax4.contourf(X,Y,Z,zdir='y', offset=6,cmap="rainbow") #生成y方向投影填充,投到x-z平面,contourf()函数

#设定显示范围

ax4.set_xlabel('X')

ax4.set_xlim(-6, 4) #拉开坐标轴范围显示投影

ax4.set_ylabel('Y')

ax4.set_ylim(-4, 6)

ax4.set_zlabel('Z')

ax4.set_zlim(-3, 3)

plt.show()

20180921120126933

20180921120442965

5.随机散点图

可以利用scatter()生成各种不同大小,颜色的散点图,其参数如下:

#函数定义

matplotlib.pyplot.scatter(x, y,

s=None, #散点的大小 array scalar

c=None, #颜色序列 array、sequency

marker=None, #点的样式

cmap=None, #colormap 颜色样式

norm=None, #归一化 归一化的颜色camp

vmin=None, vmax=None, #对应上面的归一化范围

alpha=None, #透明度

linewidths=None, #线宽

verts=None, #

edgecolors=None, #边缘颜色

data=None,

**kwargs

)

#ref:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html

from matplotlib import pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

#定义坐标轴

fig4 = plt.figure()

ax4 = plt.axes(projection='3d')

#生成三维数据

xx = np.random.random(20)*10-5 #取100个随机数,范围在5~5之间

yy = np.random.random(20)*10-5

X, Y = np.meshgrid(xx, yy)

Z = np.sin(np.sqrt(X**2+Y**2))

#作图

ax4.scatter(X,Y,Z,alpha=0.3,c=np.random.random(400),s=np.random.randint(10,20, size=(20, 40))) #生成散点.利用c控制颜色序列,s控制大小

#设定显示范围

plt.show()

20180921122354745

Finish

20180921123634408

你可以使用matplotlib库的mpl_toolkits.mplot3d模块来绘制Python中的三维连线图。通过提供一系列点的坐标,你可以使用plot方法绘制这些点之间的连线。下面是一个示例代码: ```python from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt # 创建一个画图窗口,在三维空间中绘图 fig = plt.figure() ax = fig.gca(projection='3d') # 定义点的坐标 x = [0, 1, 2, 3, 4] y = [0, 1, 2, 3, 4] z = [0, 1, 2, 3, 4] # 绘制三维连线图 ax.plot(x, y, z) # 添加坐标轴标签和标题 ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.set_title('3D Line Plot') # 显示图形 plt.show() ``` 注意,你需要导入`axes3d`模块以及`matplotlib.pyplot`库。然后创建一个`figure`对象和一个`axes`对象,指定投影类型为3D。接下来,定义点的坐标,并使用`plot`方法绘制三维连线图。最后,你可以添加坐标轴标签和标题,并显示图形。 希望这可以帮助到你。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python绘制三维图,将点连成线](https://blog.csdn.net/m0_50888396/article/details/123958804)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【Python】绘制三维立体图](https://blog.csdn.net/qq_32532663/article/details/113945947)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值