已知离散随机变量X 的概率分布:)2,1(,
)( ===K P x X P k k ,
产生随机变量X 的随机数可采用如下算法:
a) 将区间[0.1]依次分为长度为 ,,21p p 的小区间 ,,21I I ;
b) 产生[0,1]均匀分布随机数R ,若k I R ∈则令k x X =,重复(b),即得离散随机变量X 的随机数序列.
问题:(1) 下表给出了离散分布X 的概率分布表,试产生100个随机数.
X 的概率分布表
(2) 用此方法给出100个二项分布(20, 0.1)B 的随机数及10个泊松分布P(1)的随机数. 4. 正态分布的抽样
提示:设21,U U 是独立同分布的)1,0(U 变量,令
)
2sin()
ln 2()2cos()ln 2(22
/11222/111U U X U U X ππ-=-=
则1X 与2X 独立 ,均服从标准正态分布. 步骤:(1) 由)1,0(U 独立抽取1122,U u U u ==
(2) 用(*)式计算21,x x .
用此方法可同时产生两个标准正态分布的随机数.
问题: 有关随机数产生方法很多,查阅相关材料进行系统总结.
二. 随机决策问题
1.某小贩每天以一元的价格购进一种鲜花,卖出价为b 元/束,当天卖不出去的花全部损失,顾客一天内对花的需求量是随机变量, 服从泊松分布,(),0, 1, 2,,!
k
P X k e
k k λ
λ-=== .
其中常数λ由多日销售量的平均值来估计, 问小贩每天应购进多少束鲜花?(准则:期望收入S(u)最高) 问题:
(1) 在给定 1.25, 50b λ==的值后, 画出目标函数S(u)连线散点图, 观察单调性,给
出最优决策*
u ;
(2) 选取其他的λ,b ,再观察S(u)的单调性;
(3) 用计算机模拟方法来求出最优决策*u .对固定的u ,例如,u=40,对随机变量X 模拟100次,每次模拟得到一个收入,求出100个收入的平均值,即得到在决策u=40情况下的可能收入;
(4) 对所有的可能的u ,重复(3),从中找最大的,并与(1)的结果相比较. 3.一重定积分的蒙特卡罗算法
问题描述:假设函数()f x 在[,]a b 内有界连续,且()0f x ≥,求解定积分()b
a
I f x dx =
?
.
为计算出其值,可构造概率模型如下:取一个边长分别为b a -和c 的矩形D ,使曲边梯形在矩形域之内,如图2,并在矩形内随机投点,假设随机点均匀地落在整个矩形之内,