数字油画 matlab,数字油画制作中的k均值聚算法

1数值实验

在MATLAB2009a的环境下,应用AkMTI-CCI算法和传统k均值算法,对图1中的RGB图像进行颜色聚类.分别取聚类数k=6和k=12,将AkMTI-CCI算法和传统的k均值算法两种算法分别运行10次.1)由算法运行时间表(表1)可见,10次实验中传统k均值算法收敛速度波动较大,而AkMTI-CCI算法收敛速度比较稳定;且传统k均值算法平均收敛速度均大于AkMTI-CCI算法平均收敛速度,其中k=6和k=12时二者的速度比值分别为2.9104421和9.0792188.事实上随着图像像素点个数和聚类数的增加,二者的收敛速度差距会更大.2)传统k均值算法初始中心选取的随机性导致每次试验所得的聚类结果都不尽相同,聚类效果不稳定,而AkMTI-CCI算法每次试验时的初始类中心相同,从而各次实验得到的颜色聚类效果相同.图2和图3分别为聚类数k=6和k=12时运用AkMTI-CCI算法得到的颜色聚类图,而图4和图5分别为聚类数k=6和k=12时运用传统k均值算法得到的一般颜色聚类图.比较聚类图可见,当聚类数k=6时,AkMTI-CCI算法得到的聚类图像在颜色上更接近原始图像,且花瓣的纹理更清晰一些;当聚类数k=12时,AkMTI-CCI算法与传统k均值算法得到的聚类图像的颜色效果上相近,但AkMTI-CCI算法在花蕊和花瓣边缘部分保留了更多地颜色细节.实验结果表明,相对于传统的k均值算法,Ak-MTI-CCI算法对图像进行颜色聚类时算法稳定、速度快,且一般情况下,AkMTI-CCI算法进行聚类时颜色效果更接近于原始图像,同时对图像的颜色分割更细致一些.

2AkMTI-CCI算法合理性分析

数值实验表明在对图像进行颜色聚类时,Ak-MTI-CCI算法在收敛速度和颜色聚类的效果等方面均优于传统的k均值算法.1)AkMTI-CCI算法颜色聚类效果的提高依赖于初始中心的选取.传统的k均值算法通过随机方式选取聚类中心,其颜色可能不能很好的体现出图像中的颜色差异,从而会影响颜色聚类的效果.而AkMTI-CCI算法中第一个初始聚类中心取作图像的所有像素点颜色均值,而其余的聚类中心按照最远优先原则选取,从理论上实现了类间距离最大的聚类原则.这样选取的初始中心离散程度较大,能够较好地体现出图像中的颜色差异,且每次试验均可得到相同的初始聚类中心,因而用AkMTI-CCI算法进行图像颜色聚类不仅可以提高颜色聚类效果,保留更多的颜色细节,而且也增加了算法的稳定性.2)AkMTI-CCI算法收敛速度的提高依赖于下述两个方面:首先,传统的k均值聚类算法中要计算n•k•e次两点之间的欧氏距离,其中n是图像中像素点的个数,k是聚类的个数,e是迭代次数.一般而言,这里e还会随着n、k以及数据的维数的增加而增加.而AkMTI-CCI算法在距离计算时通过三角不等式利用距离的上下界来控制距离的计算量,这里仅仅需要计算大约n•e次两点间的欧氏距离.可见,AkMTI-CCI算法中,距离计算量的极大减少使得算法收敛速度得到了极大的提高,且像素点个数越少,聚类数越大,收敛速度会越快.其次,传统的k均值算法的收敛条件是每个类的类内误差平方和最小,而AkMTI-CCI算法以迭代时聚类中心收敛为优化目标.因而,AkMTI-CCI算法在判定算法收敛条件时计算量更小,从而其收敛速度会更快些.

3结论

颜色聚类效果的好坏将直接影响数字油画制作的质量.用传统的k均值聚类算法对图像进行颜色聚类,不仅速度慢,而且初始中心选择的随机性会影响图像颜色聚类的效果和算法的稳定性,从而最终影响到制作数字油画的速度和质量.针对这一问题,本文给出了AkMTI-CCI算法.该算法中,由于使用三角不等式来减少距离的计算量,极大的提高了算法的速度,且由于初始中心选取的合理性使得最终的聚类效果更合理.数值实验表明,AkMTI-CCI算法能够极大地提高颜色聚类的速度,聚类后的图像颜色接近实际图像颜色,且更好地保留了图像颜色的细节.考虑到AkMTI-CCI算法进行图像颜色聚类时,仅仅利用像素点的颜色信息进行分类,没有考虑到像素点的位置信息,试想如果能够同时结合颜色和位置信息对像素点进行聚类,则聚类结果可能会更加准确.另外,近年来一些新的较好的改进的k均值聚类算法被提出,这些算法像基于三角不等式的加速k均值算法一样,即考虑到算法的稳定性又提高了算法的聚类速度.如2010年Xie和Jiang提出了一种改进的GKM算法[9],该算法改进了GKM算法中产生下一个聚类中心的方法,利用了Park和Jun提出的K-medoids聚类算法的思想[10],定义新的函数来选取下一个聚类的最佳备选中心,从而减少了GKM算法的计算量,而且避免了噪声数据对聚类结果的影响.这类算法对彩色图像的颜色聚类效果还有待进一步研究.

作者:苏清华 黄樟灿 汪金水 单位:湖北工程学院 武汉理工大学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值