
接着上一部分 落叶红不扫:【三】电磁场的量子态(1) 进行介绍。
三、压缩态
1. 压缩态的引入
在上一篇中我们讨论过,真空态与相干态的场正交分量涨落,都满足最小不确定度

2. 压缩态的构造
在上一篇笔记中,我们通过类比经典谐振子,提出对真空态进行“空间平移”这一操作,得到了在空间中谐振运动、但波包形状不变的相干态。但对于压缩态而言,它的概念依赖于场的“涨落”这一量子性质。真空态场算符涨落的压缩,对应到坐标表象下的波包上来看,就是基态波包形状的压窄,这是经典谐振子不具备的图景——在经典世界中根本不存在波包这一概率性的概念。
既然不能与经典世界类比,我们可以直接从数学表达式出发,来寻找能实现“压缩”基态波包的操作。“压缩”在数学形式上并没有“平移”(
增大二次项系数,构造出一个收缩的势阱

2.1 压缩真空态
为了描述真空态在收缩势阱下的幺正演化——即压缩过程,我们通过构造含有双光子项,且幺正的压缩算符
2.2 压缩相干态(压缩平移真空态)
除了对真空态进行压缩外,我们还可以对平移后的真空态——相干态进行压缩,即
2.3 平移压缩真空态
将压缩相干态中压缩与平移的顺序置换一下,将得到平移压缩真空态,即
3. 压缩态的本征方程
因为场算符是