分计算iv值_数据挖掘模型中的IV和WOE详解

IV(Information Value)是衡量特征预测能力的指标,基于WOE(Weight of Evidence)进行计算。文章介绍了IV的直观理解,计算方法,以及与WOE的关系。在处理极端情况时,如响应比例为0或100%,需要采取特殊处理,避免IV值变为无穷大。IV在特征选择中扮演重要角色,考虑了变量的信息贡献和样本比例。
摘要由CSDN通过智能技术生成

原文:https://blog.csdn.net/kevin7658/article/details/50780391

IV的全称是Information Value,中文意思是信息价值,或者信息量。

IV是特征选择的方法之一。挑选入模变量过程是个比较复杂的过程,需要考虑的因素很多,比如:变量的预测能力,变量之间的相关性,变量的简单性(容易生成和使用),变量的强壮性(不容易被绕过),变量在业务上的可解释性(被挑战时可以解释的通)等等。但是,其中最主要和最直接的衡量标准是变量的预测能力。IV可以用来衡量自变量的预测能力。类似的指标还有信息增益、基尼系数等等。

对IV的直观理解

从直观逻辑上大体可以这样理解“用IV去衡量变量预测能力”这件事情:我们假设在一个分类问题中,目标变量的类别有两类:Y1,Y2。对于一个待预测的个体A,要判断A属于Y1还是Y2,我们是需要一定的信息的,假设这个信息总量是I,而这些所需要的信息,就蕴含在所有的自变量C1,C2,C3,……,Cn中,那么,对于其中的一个变量Ci来说,其蕴含的信息越多,那么它对于判断A属于Y1还是Y2的贡献就越大,Ci的信息价值就越大,Ci的IV就越大,它就越应该进入到入模变量列表中。

IV的计算

IV的计算是以WOE为基础的

WOE

WOE的全称是“Weight of Evidence”,即证据权重。WOE是对原始自变量的一种编码形式。

要对一个变量进行WOE编码,需要首先把这个变量进行分组处理(也叫离散化、分箱等等,说的都是一个意思)。分组后,对于第i组,WOE的计算公式如下:

1f3d2c5cc165d73121aa34054467304d.png

其中,pyi是这个组中响应客户(风险模型中,对应的是违约客户,总之,指的是模型中预测变量取值为“是”或者说1的个体)占所有样本中所有响应客户的比例,pni是这个组中未响应客户占样本中所有未响应客户的比例,#yi是这个组中响应客户的数量,#ni是这个组中未响应客户的数量,#yT是样本中所有响应客户的数量,#nT是样本中所有未响应客户的数量。

从这个公式中我们可以体会到,WOE表示的实际上是“当前分组中响应客户占所有响应客户的比例”和“当前分组中没有响应的客户占所有没有响应的客户的比例”的差异。

对这个公式做一个简单变换,可以得到:

608bdf751cfd608711a9856577a1c10f.png

变换以后我们可以看出,WOE也可以这么理解,他表示的是当前这个组中响应的客户和未响应客户的比值,和所有样本中这个比值的差异。这个差异是用这两个比值的比值,再取对数来表示的。WOE越大,这种差异越大,这个分组里的样本响应的可能性就越大,WOE越小,差异越小,这个分组里的样本响应的可能性就越小。

IV的计算公式

e99d9c1d679f6a138dec0a82dadc4c0e.png

20e59607134824804d7b38da99e1aa02.png

IV有以下特点:

  • 对于变量的一个分组,这个分组的响应和未响应的比例与样本整体响应和未响应的比例相差越大,IV值越大,否则,IV值越小;
  • 极端情况下,当前分组的响应和未响应的比例和样本整体的响应和未响应的比例相等时,IV值为0;
  • IV值的取值范围是[0,+∞),且,当当前分组中只包含响应客户或者未响应客户时,IV = +∞。

关于IV和WOE的进一步思考

为什么用IV而不是直接用WOE

fde25e2c505386ebfcc6d8607e9b0809.png

从这个表我们可以看到,变量取1时,响应比达到90%,对应的WOE很高,但对应的IV却很低,原因就在于IV在WOE的前面乘以了一个系数,而这个系数很好的考虑了这个分组中样本占整体样本的比例,比例越低,这个分组对变量整体预测能力的贡献越低。相反,如果直接用WOE的绝对值加和,会得到一个很高的指标,这是不合理的。

IV的极端情况以及处理方式

V依赖WOE,并且IV是一个很好的衡量自变量对目标变量影响程度的指标。但是,使用过程中应该注意一个问题:变量的任何分组中,不应该出现响应数=0或非响应数=0的情况。

原因很简单,当变量一个分组中,响应数=0时,此时对应的IVi为+∞。

而当变量一个分组中,没有响应的数量 = 0时,此时的IVi为+∞。由上述问题我们可以看到,使用IV其实有一个缺点,就是不能自动处理变量的分组中出现响应比例为0或100%的情况。那么,遇到响应比例为0或者100%的情况,我们应该怎么做呢?建议如下:

(1)如果可能,直接把这个分组做成一个规则,作为模型的前置条件或补充条件;

(2)重新对变量进行离散化或分组,使每个分组的响应比例都不为0且不为100%,尤其是当一个分组个体数很小时(比如小于100个),强烈建议这样做,因为本身把一个分组个体数弄得很小就不是太合理。

(3)如果上面两种方法都无法使用,建议人工把该分组的响应数和非响应的数量进行一定的调整。如果响应数原本为0,可以人工调整响应数为1,如果非响应数原本为0,可以人工调整非响应数为1。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
WOE编码和IV是一种常用的特征工程方法,它们可以用于衡量一个特征与目标变量之间的关联程度和预测能力。下面是Python计算IVWOE编码的示例代码: ```python import pandas as pd import numpy as np def calc_woe_iv(df, col, target): """ 计算指定特征的WOE编码和IV :param df: 数据集 :param col: 特征列名 :param target: 目标变量列名 :return: WOE编码和IV """ # 计算该特征每个取的数量和占比 freq = pd.DataFrame({'total': df.groupby(col)[target].count(), 'bad': df.groupby(col)[target].sum()}) freq['good'] = freq['total'] - freq['bad'] freq['bad_rate'] = freq['bad'] / freq['bad'].sum() freq['good_rate'] = freq['good'] / freq['good'].sum() # 防止出现除0错误 freq.loc[freq['bad_rate'] == 0, 'bad_rate'] = 0.0001 freq.loc[freq['good_rate'] == 0, 'good_rate'] = 0.0001 # 计算WOE编码 freq['woe'] = np.log(freq['good_rate'] / freq['bad_rate']) # 计算IV freq['iv'] = (freq['good_rate'] - freq['bad_rate']) * freq['woe'] iv = freq['iv'].sum() return freq[['woe', 'iv']].reset_index().rename(columns={col: 'value'}), iv ``` 这个函数的输入参数包括数据集`df`、特征列名`col`和目标变量列名`target`,输出WOE编码和IV。在函数,我们首先计算了该特征每个取的数量、坏样本数量、好样本数量、坏样本率、好样本率和WOE,然后根据IV的公式计算了每个取对应的IV,并将它们相加得到总的IV。最后,我们将WOE编码和IV合并成一个DataFrame并返回。 需要注意的是,代码为了避免出现除0错误,我们在计算WOE编码和IV时对母加上了一个极小0.0001。同时,WOE编码和IV计算方式可以根据具体的业务需求进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值