数值计算方法在计算机的应用,数值计算方法在计算机科学中的应用和误差序列实验推荐.doc...

数值计算方法在计算机科学中扮演重要角色,涉及代数方程、线性代数、微分方程的数值解,以及误差分析。随着计算机的发展,数值计算已成为不可或缺的科研手段,涵盖函数逼近、数值积分、线性代数问题和非线性方程求解。误差是测量值与真实值的差异,是计算中不可避免的部分,数值计算方法则关注算法的误差、稳定性和收敛性。
摘要由CSDN通过智能技术生成

数值计算方法在计算机科学中的应用和误差序列实验推荐

数值计算方法在计算机科学中的应用和误差序列实验

【摘要】计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性、收敛性和误差分析等理论问题。测量值与真实值之间的差异称为误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。误差是不可避免的,只能减小。

关 键 词 数值计算方法、计算机科学、误差

一、数值计算方法在计算机科学中的应用

数值计算方法概述

(一)数值计算方法属于计算数学的范畴,是研究各种数学问题的数值方法设计、分析、有关的数学理论和具体实现的一门学科。由于近几十年来计算机的迅速发展,数值计算方法的应用已经普遍深入到各个科学领域,很多复杂的和大规模的计算问题都可以在计算机上进行计算,新的、有效的数值计算方法不断出现。现在,科学与工程中的数值计算已经成为各门自然科学和工程技术科学的一种重要手段,成为与实验和理论并列的一个不可缺少的环节。所以数值计算方法既是一个基础性的,同时也是一个应用性的数学学科,与其它学科的联系十分紧密。

由于大量的问题要在计算机上求解,所以要对各种数值计算方法进行分析,其内容包括:误差、稳定性、收敛性、计算工作量、存贮量和自适应性,这些基本的概念用于刻画数值方法的适用范围、可靠性、准确性、效率和使用的方便性等。

当代实际的科学与工程计算中,计算问题往往

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值