latex 无穷_无穷维随机分析(一)

市面上有关《无穷维随机分析》(或《Malliavin 分析》)的书并不多,这是由于该理论较为前沿的缘故。

无穷维随机分析有很多种不同的讲法,这也导致了初学者在选取教材时的困惑以及多本教材同时学习造成的逻辑混乱。为此,我们提取不同教材的各个部分,在此基础上加以改善,形成一个相对清晰的体系。

在此之前,我们先分别从概率学角度与分析学角度来谈谈,什么是“无穷维随机分析”。

  • 概率学的角度

回顾《随机分析》,该理论最初由伊藤清于 1944 年发明,是对随机过程求积分以及此基础上建立随机(偏)微分方程,从而构造了很多传统方法构造不了的强马氏过程(

扩散过程)。

而《无穷维随机分析》的理论则由 Malliavin 于 1976 年发明(又称为 Malliavin 分析),其为一套对随机变量求导的运算法则,将随机微分方程的解看成某种程度上“光滑”的 Wiener 泛函,解决了传统方法解决不了的求导问题,并广泛应用于数学以外的其他领域(如金融中的期权的敏感性、风险对冲方法、最优投资策略等,可戳专栏Meet in Finance;再如物理中,虽然自由量子场的公理体系已经建立,但相互作用量子场的公理体系以及重整化理论还无严格数学基础,而应用无穷维随机分析,很可能建立出相互作用量子场的白噪声框架)。

  • 分析学的角度

在之前的《测度论》中我们提到,可测函数在某些条件下可以求不定积分再求 Radon 导数运算回到自身,但对可测函数能否直接求导并未给出答案。不过在后续的《调和分析》中,我们看到,有限维空间

上的可测函数在某些条件下是可以求导的(Sobolev 空间理论),那么一个自然的问题是:如何对一般的无穷维空间上的可测函数进行求导?

首先的一个问题便是,我们如何在无穷维空间中定义一个类似于 Lebesgue 测度的测度?很遗憾的:如果

是一个无穷维可分 Banach 空间,那么其上不存在一个平移不变的 Borel 测度,使得其在某个开球上取值为有限正数

因此,我们必须牺牲平移不变性,取而代之寻找平移“拟”不变性的测度,在此基础上进行分析运算。

注1:本文中线性空间均为线性空间。

注2:由于现在开始,我们会考虑随机变量(而不一定是随机过程),故概率空间不一定要带“流”,但均为完全的概率空间;若带“流”,则流均满足“通常条件”。且无说明时,随机过程的相等均指在“等价”或“不可区分”意义下的相等。

注3:

表示
上本身及各阶导数增长的阶不超过多项式的光滑函数全体。

注4:该部分积分

均表示 Itô 积分。

【一】抽象 Wiener 空间

1. 抽象 Wiener 空间

8965c169eba6eb8741d584f72d2a735f.png

定义:考虑如下三元组

(i)

为一个可分 Banach 空间;

(ii)

为一个可分 Hilbert 空间,且
有界稠密地嵌入
中;

(iii)

上的概率测度,且有:

此时,称

为一个
抽象 Wiener 空间
Cameron-Martin 子空间
为其上的
Wiener 测度

注1:由(i)(ii)易知,有有界稠密的嵌入关系

。(且由注3知为紧嵌入)

注2:抽象 Wiener 空间诱导了一个概率空间

(为完全的概率空间,
关于
的完全化)。且对任意
上的 Gauss 随机向量,满足均值为
,协方差为
。这个本质上是利用了《测度论(二)》中概率测度与特征函数一一对应的性质,给出了定义中的(iii)。

注3:有紧嵌入关系

,且存在
为酉算子(即保内积线性同构),使得
。且对
,其为零均值方差为
的 Gauss 随机变量。(如下定义
:易证存在
的一组规范正交基,且它们为
上独立的 Guass 族。定义
中的极限,其不依赖于基的选取。)

注4:结合注1和3知,对

,有

注5:定义

,称为
缓增光滑泛函空间。有稠密性关系:
稠密

注6:虽然

中稠密,但

注7:由后文计算公式知,

是梯度算子
的限制,
是散度算子
的限制。
  • :经典 Wiener 空间

在《随机过程》中我们通过 Wiener 构造法构造了

的所有连续函数构成的空间)上的一维 Wiener 过程,其本质上利用了 Wiener 过程的轨道是连续的,从而把
的所有函数构成的空间)“限制”在了
上。我们称这种构造出来的测度(或者一般的 Wiener 过程在
上的分布)称为
经典 Wiener 测度

定义:考虑如下三元组

(i)

(ii)

(iii)

为经典 Wiener 测度(在
上的限制);

经典 Wiener 空间。可验证,其为抽象 Wiener 空间。

注:经典 Wiener 空间诱导了一个概率空间

(流为坐标过程的生成流的加强化,满足“
通常条件”),及其上的 Wiener 过程
(即坐标过程)。且对

2. 平移拟不变性

8bfd4ea5c96032c2ece3a33498eb2ec2.png

为一个抽象 Wiener 空间,则对任意
平移测度
是与
等价的概率测度,且有:

(i)

);

(ii)

);

(iii)

(表示
上所有有界可测函数的全体)。

证明:一般情况的证明较为复杂,故只证经典 Wiener 空间的情形。此时,有概率空间

(满足“通常条件”),及其上的 Wiener 过程
。将
看成概率空间上确定的随机过程,令
),其为连续局部鞅,考虑指数鞅
,且满足 Novikov 条件,故
为连续鞅,由
Girsanov 定理知,
是与
等价的概率测度,且
上的 Wiener 过程,故
,易验证满足如上三条性质。 ☐
  • :经典 Wiener 空间上的酉算子

当考虑经典 Wiener 空间

时,由测度的平移拟不变性可知: 对
。(右端为 Itô 积分)

【二】Sobolev 空间

有了抽象 Wiener 空间(或者说有了一个无穷维空间上的平移拟不变测度)后,我们要类似《调和分析》的做法,定义其上函数的导数以及相应的 Sobolev 空间。

特别的,该部分无特殊声明时,均默认

(但我们最常考虑
的情形),
可分 Hilbert 空间

1. Sobolev 空间

ebdc6b62eb14459e7de70361314be7d7.png

方向导数:设

为抽象 Wiener 空间,对
,定义
的无界线性算子
(称为关于
方向导数):对
,若存在
,使得
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值