动态改变eachers图表高_两种群竞争模型的稳定性分析

本文通过微分方程模型研究了生物种群竞争的稳定性,分析了两种群竞争模型的平衡点及其稳定性,揭示了种群间的相互影响。通过数值模拟验证了理论结论,表明在特定条件下种群能稳定共存或一方会趋向灭绝。
摘要由CSDN通过智能技术生成

基于两种群竞争模型的稳定性分析

摘要:本文主要研究了生物数学中的两种群竞争模型, 运用微分方程的定性和稳定性理论, 首先对两种群竟争模型的解的情况给出了定性分析,并对其平衡点作了稳定性分析, 揭示了两种竞争种群之间的数量变化关系. 最后从生物学角度对模型作出相应的解释,并运用数值模拟验证了结论的可行性.

关键词:竞争种群;稳定性;平衡点;数值模拟

1引 言

对生物种群分布数量和密度的研究,在生态学和生物学研究中有着重要的意

义[1].然而由于生物种群之间受各种复杂的关系制约,想要获得种群在特定时刻的准确分布数量或密度分布情况,往往相当困难,这也是研究的热点所在. 本文从两种群竞争关系入手,建立微分方程模型,运用稳定性理论并结合实例作出了模型的动力学性质分析.

2 两种群竞争数学模型

设系统内存在两种群x 和y ,且两种群都以来自本系统外的同一食饵为食.

以x (t ) ,y (t ) 分别表示t 时刻两种群的数目,假定x (t ) ,y (t ) 在t 上是可微函数,则给出模型为

⎧dx

=x (a 1-b 1x -c 1y ), ⎪⎪dt

(1) ⎨

dy ⎪=y (a 2-b 2x -c 2y ). ⎪⎩dt

模型(1)中各参数均为正,种群内部和种群之间的关系取决于各参数前得符号. 若a 1≥0, a 2≥0,则表明两种群的食物来源于系统外部;若b 1≤0, c 2≤0,则表示两种群受密度制约;若c 1≤0, b 2≤0,则表明两种群为竞争关系,彼此产生威胁,见[2]和[3].

3 预备知识

对自治系统:

⎧dx

=P (x , y ), ⎪⎪dt

(2) ⎨

dy ⎪=Q (x , y ). ⎪⎩dt

从文[4]中得知一下定义和定理.

定义1 若存在点(x 0, y 0) 使得P (x 0, y 0) =Q (x 0, y 0) =0,则x =x 0, y =y 0显然是

(2)的常数解,其轨线为一点(x 0, y 0) ,称这样的点为平衡点.

定义2 给定∀ε>0,∃δ>0(与ε, t 0有关),使得∀x 0满足:x 0≤δ时,方

dx dt

=f (x , t ) 的由初始值x 0确定的解x (t ) 均有:x 0≤ε

程组组

dx dt

,∀t >t 0. 则称方程

=f (x , t ) 的零解x =0

dx dt

为稳定的.

时,

定义3 对方程组

=f (x , t ) 的零解若是稳定的,且∃δ0>0,

使得x 0≤δ0

满足初始值x 0确定的解x (t ) 均有:lim x (t ) =0,则称零解x =0为渐进稳定. 若

x →+∞

x =0

为渐进稳定的,且仅当x 0∈D 0时满足初始值x 0的解x (t ) 均有:lim x (t ) =0,

x →+∞

则域D 0称为稳定域或吸引域,若吸引域是所考虑的整个区域δ0=+∞,则称零解

x =0

为全局渐进稳定的.

定义4 考虑D 1:x ≤h 1, y ≤h 2,若函数V (x , y ) 在D 1上连续,可微. 且满足

2

2

V (0,0) =0,V (x , y ) >0,且x +y ≠0

,则称V (x , y ) 为D 1上的正定函数.

定理1[5] 对于非线性系统

dx dt

=A x +R (x ) , (3)

R ) x 其中R (0)=0,

且x →0

=

,A 为常数矩阵. 若特征方程det(A -λE ) =0没

有零解,则(3)与其线性系统dx dt =A x 的平衡点的稳定性一致.

对线性系统dx dt =A x 平衡点稳定性的讨论,用其det(A -λE ) =0的跟来判

定,对A 为2阶时有如下讨论.

定理2[5] 若det(A -λE ) =0的两个特征根λ1≠λ2为实根,且λ1λ2>0,则λ1

时,平衡点渐近稳定,λ10时不稳定;若有共轭复根时,则R e λ0时不稳定,R e λ=0时平衡点稳定,但非渐近稳定.

因为定理2是用来讨论一类特殊平衡点(0,0) 的稳定性,若平衡点不是(0,0)

时,可作平移变换,这是因为平移变换不改变稳定性态.

4平衡点的稳定性讨论

称与模型(1)相应的自治系统

⎧x (a ⎨

1-b 1x -c 1y ) =0,

y (a ⎩2-b 2x -c 2y ) =0.

的解P (x 0, y 0) 为(1)的平衡点.

显然模型(1)有四个平衡点P ) P a 21(0, 0,

2(0,c )

,2

P 4(

a 1c 2-a 2c 1b 1a 2-b b c , 2a 1

b ) ,其中b 1c 2≠b 2c 1.

它们的稳定性分别为

12-b 2c 1b 1c 2-2c 1

1. 对P 1(0,0) 而言,满足定理1,讨论其线性系统

⎧dx

⎪⎪=a 1x ⎨

dt

, ⎪dy ⎪⎩dt

=a 2

y .

的特征方程为

λ-a 1

λ-a =0

2

得λ1=a 1>0, λ2=a 2>0,由定理2,故P 1(0,0) 不稳定.

2.对P 22(0,

a c ) ,作平移变换

2

(4) P 3(

a 1b , 0)

1

X =x , ⎧

Y =y -a c ⎩22

代入(1)得

a 2⎧dX 2

=(a -c ) X -b X -c 1XY , 111⎪dt c ⎪2

a dY 2⎪=-2b 2X -a 2Y -b 2XY -c 2Y .

⎪c 2⎩dt

据定理1,取线性系统

a 2⎧dX

=(a -c 1) X , 1⎪dt c ⎪2

a dY ⎪=-2b 2X -a 2Y .

⎪c 2⎩dt

的特征方程为

λ-(a 1-c 1

a 2c 2

b 2

a 1c 1

a 2c 2

) 0

=0,

λ+a 2

a 2c 2

a 2c 2

解得λ1=a 1-定.

a 2c 2

c 1, λ2=-a 2. 显然,当

时,P 2(0,

)

渐近稳定,否则不稳

3. 对于P 3(

a 1b 1

, 0) ,作平移变换

⎧X =x -a 11,

Y =y ⎩

代入(1)得

a 1⎧dX 2

=-a X -c Y -b X -c 1XY , 111⎪dt b 1⎪

⎪dY =(a -b a 1) Y -b XY -c Y 2.

2222

⎪b 1⎩dt

据定理1,取线性系统

a 1⎧dX

=-a X -c 1Y , 1⎪dt b 1⎪

⎪dY =(a -a 1b ) Y .

22

⎪b 1⎩dt

的特征方程为

λ+a 1

a 1b 1

c 1a 1b 1

=0, b 2)

a 1b 1

a 2b 2

a 1b 1

λ-(a 2-

a 2b 2

a 1b 1

得到λ1=-a 1, λ2=a 2-稳定.

4. 对P 4(

a 1b 1

b 2. 当

时,P 3(

, 0) 渐近稳定;当

>

时,不

a 1c 2-a 2c 1b 1a 2-b 2a 1

, ) ,作平移变换

b 1c 2-b 2c 1b 1c 2-b 2c 1

a 1c 2-a 2c 1⎧

X =x -, ⎪b c -b c ⎪1221

⎪Y =y -b 1a 2-b 2a 1, ⎪b 1c 2-b 2c 1⎩

代入(1)得

a 1c 2⎧dX =-b 1⎪dt b 1c 2⎪⎨

⎪dY =-b b 1a 2

2

⎪dt b 1c 2⎩

-a 2c 1-b 2c 1-b 2a 1-b 2c 1

X -c 1X -c 2

a 1c 2-a 2c 1b 1c 2-b 2c 1b 2a 2-b 2a 1b 1c 2-b 2c 1

Y -b 1X

2

-c 1XY ,

Y -b 2XY -c 2Y .

2

由定理1,去线性系统

⎧dX

⎪dt =-b 1⎪⎨

⎪dY =-b

2

⎪dt ⎩

a 1c 2-a 2c 1b 1c 2-b 2c 1b 1a 2-b 2a 1b 1c 2-b 2c 1

X -c 1X -c 2

a 1c 2-a 2c 1b 1c 2-b 2c 1b 1a 2-b 2a 1b 1c 2-b 2c 1

Y ,

Y .

的特征方程为

λ+b 1b 2

a 1c 2-a 2c 1b 1c 2-b 2c 1

c 1

a 1c 2-a 2c 1b 1c 2-b 2c 1

b 1a 2-b 2a 1b 1c 2-b 2c 1

=0,

b 1a 2-b 2a 1b 1c 2-b 2c 1

λ+c 2

即有

λ+(b 1

2

a 1c 2-a 2c 1b 1c 2-b 2c 1

+c 2

b 1a 2-b 2a 1b 1c 2-b 2c 1

) λ+

(a 1c 2-a 2c 1)(b 1a 2-b 2a 1)

b 1c 2-b 2c 1

=0.

由根与系数之间的关系,可知:

(a 1c 2-a 2c 1)(b 1a 2-b 2a 1)

b 1c 2-b 2c 1

(a 1c 2-a 2c 1)(b 1a 2-b 2a 1)

b 1c 2-b 2c 1

≥0且b 1

a 1c 2-a 2c 1b 1c 2-b 2c 1

+c 2

b 1a 2-b 2a 1b 1c 2-b 2c 1

>0时,P 4渐近稳定.

综上所述,得出两种群竞争模型稳定性的一般结论:对于模型(1),各参数若满足

1. 当

a 1c 1a 2b 2

时,P 2(0,

a 1b 1

a 2c 2

) 渐近稳定,即lim x (t ) =0,lim y (t ) =

t →∞

t →∞

a 2c 2

.

2. 当

时,P 3(

, 0) 渐近稳定,即lim x (t ) =

t →∞

a 1b 1

,lim y (t ) =0.

t →∞

3.

(a 1c 2-a 2c 1)(b 1a 2-b 2a 1)

b 1c 2-b 2c 1

≥0且b 1

a 1c 2-a 2c 1b 1c 2-b 2c 1

+c 2

b 1a 2-b 2a 1b 1c 2-b 2c 1

>0时,

P 4(

a 1c 2-a 2c 1b 1a 2-b 2a 1

, ) 渐近稳定,即

b 1c 2-b 2c 1b 1c 2-b 2c 1

a 1c 2-a 2c 1b 1c 2-b 2c 1

lim x (t ) =

t →∞

,lim y (t ) =

t →∞

b 1a 2-b 2a 1b 1c 2-b 2c 1

.

5生物学意义

在模型(1)得出的一般性结论中,对于结论1,当

a 1b 1

c 1a 2b 1c 2

a 1c 1

时,即

a 11c 11

a 2c 2

. 这就说明当种群之间由竞争同一资源而对各自的生存产生环境阻

c 1a 2b 1c 2

力时,在种群x 的环境容纳量低于y 的环境容纳量而导致替代环境容量时,

最终种群x 趋于灭绝;而种群y 将最终稳定于其环境容量

a 2b 2

a 1b 1

a 2c 2

b 2a 1c 2b 1

a 2c 2

. 同理可知,对于

结论2,当

时,即

时,种群y 的环境容纳量低于x 的环境容纳

量而导致替代环境容量

a 1b 1

b 2a 1c 2b 1

时,最终种群y 趋于灭绝,而种群x 将最终稳定于

其环境容量. 对于结论3,说明了上述两个条件的方面同时成立时,种群x 的

环境容纳量对y 产生的替代环境容纳量不至于威胁到y 的生存,种群y 的环境容纳量也不至于威胁到x 的生存. 故在此情形下,两种群都将得以生存而不会灭绝.

进一步,若考虑到种群数目的Logistic 模型,可以将模型(1)变形为

⎧dx ⎛a 1a 1(c 1b 1) ⎫

=x a -x -y ⎪, ⎪ 1

a 11a 1b 1

⎪dt ⎝⎭

(5) ⎨

⎛⎫a (b c ) a 2⎪dy

=y a 2-222x -y ⎪. ⎪dt a 2c 2a 2c 2⎭⎝⎩

其中a 1, a 2为种群x , y 的净自然增长率,a 11, a 22为种群x , y 的环境容纳量,而c 1b 1反应了当y 与x 共同竞争同一资源时,此时对x 的环境阻力,即一个y 的存在相当于c 1b 1个x 的存在;b 2c 2反应了当x 和y 共同竞争同一资源时,对y 的环境阻力,即一个x 的存在相当于b 2c 2个y 的存在. 常数c 11和b 2c 2表明两种群之间的竞争关系.

6数值模拟

下面我将利用数值模拟来更好更直观的理解模型(1)在4个不同平衡点的动力学性态,从而验证本文所讨论的稳定性结论的正确性.

1. 对于模型(1),验证结论1. 令

a 1=0.5, a 2=0.4, b 1=0.3, b 2=0.2, c 1=0.7, c 2=0.1,从而满足

a 1c 1

a 2c 2

,取初始

条件为x (0)=y (0)=1,经过计算得 x *=0, y *=4,由图1-a 和图1-b ,我们可以看出,模型(1)在正平衡位置P =(0,4) 是渐近稳定的

.

1-a

图1-b

2. 对于模型(1),验证结论2. 令

a 1=0.5, a 2=0.8, b 1=0.3, b 2=0.9, c 1=0.4, c 2=0.2

53

,从而满足

a 2b 2

a 1b 1

,取初始

条件为x (0)=y (0)=1,经过计算得 x *=, y =0,由图

*

2-a 和图2-b ,我

们可以看出,模型(1)在正平衡位置P =(, 0) 是渐近稳定的

.

3

5

2-a

图2-b

3. 对于模型(1),验证结论3. 令

a 1=1, a 2=0.8, b 1=0.9, b 2=0.4, c 1=0.3, c 2=0.5,从而满足

(a 1c 2-a 2c 1)(b 1a 2-b 2a 1)

b 1c 2-b 2c 1

≥0且b 1

a 1c 2-a 2c 1b 1c 2-b 2c 1

+c 2

b 1a 2-b 2a 1b 1c 2-b 2c 1

>0,

取初始值x (0)=y (0)=1,计算得x *=0.7879, y *=0.9697. 由图3-a 和图3-b ,

我们可以看出,模型(1)在正平衡位置P =(0.7879,0.9697) 是渐近稳定的

.

3-a

图3-b

参考文献

[1]姜启源, 谢金星. 数学模型[M], 北京: 高等教育出版社, 2007, 212-220.

[2]马知恩, 周义仓. 常微分方程定性与稳定性方法[M], 北京: 科学出版社, 2005,

140-156.

[3]王高雄, 周知銘. 常微分方程[M], 北京: 高等教育出版社, 2000, 266-270.

[4]戴斌祥. 微分方程定性和稳定性方法[M], 长沙:湖南大学出版社, 2006,178-200.

[5]毛凯, 李日华. 种群竞争模型的稳定性分析[J], 生物数学学报, 1999, 14(3):288-292.

[6]S.B.Hsu, T.W.Hwang. Global stability for a class of perdator-prey system[J].SIAM J.Appl.Math, 1995, 55:763-783.

[7]K.Gopalsamy. Stability and oscillations in delay differential equations of population dynamics[J]. Dordrecht:Kluwer Academic, 1998.

[8]Fan M, Zou X F. Global asymptotic stability of a class of nonautonomous integro differential systems and applications[J]. Nonlinear Analysis, 2004,57:411-435.

[9]Zhang Z Q, Wang Z C. A periodic stage structure model[J]. Applied Mathematics letters, 2003,16:1051-1061.

[10]Fang H, Wang Z C. Existence and global attractivity of positive periodic solutions for delay Lotka-Volterra competition path systems with stocking[J]. Joural of Mathematical Analysis and Applications, 2004, 293:190-209.

- 11 -

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值