泊松分布的期望和方差_《深入浅出统计学》-读书笔记-几何分布、二项分布、泊松分布...

e462525bd73da402be38c7fbc47a06d0.png

《深入浅出统计学》,读书笔记,第七章:几何分布、二项分布、泊松分布

几何分布

几何分布(Geometric distribution)是离散型概率分布
其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。

77b0caf02533647f49dbf71e5ec31fe1.png

小栗子:

理查在练习滑雪,他在任意一次试滑中(每次试滑都独立),不出事故顺利抵达终点的概率是0.2,求,他试滑一次或者两次就能抵达终点的概率是多少

他每一次试滑,到终点的概率是0.2,也就是第一次成功的概率是0.2,第一次失败,第二次成功的概率是0.8*0.2=0.16,因为事件相互独立,所以他一次或者两次试滑抵达终点的概率是0.36

这是书中,一开始提到的例子,用来引出几何分布的,假设我们要求他100次内抵达终点的概率?如果手工计算就太麻烦了。

几何分布有几个特点:

  1. 一系列相互独立的试验
  2. 每一次试验,既有成功的可能,也有失败的可能
  3. 要求的是为了取得第一次成功需要进行多少次试验

p是成功的概率,(1-p)是失败的概率

几何分布的众数是1,而且,X=1是具有最大概率的数,也就是说,成功的概率在第一次试验时达到最大

上述公式,可以进行延伸,

表示,为了获得一次成功,试验r次以上的概率是,试验r次以上,也就是要失败r次,失败的概率是1-p,所以

也可推导出

几何分布的期望是

,方差是

小栗子:

另一位滑雪者,顺利滑到坡底的概率是0.4

  1. 第一次滑雪失败,第二次成功的概率是?

P(X=2) = 0.4*0.6=0.24

2. 第四次,或者不足四次就滑雪成功的概率是?

P(X<=4) =

=0.8704

3. 四次以上才活得成功的概率是?

由上面的公式可以知道:P(X>4)+P(X<=4)=1

所以,P(X>4) = 1-0.8704 = 0.1296

哦,这里不用套这个公式,直接使用

4次以上才成功,也就是,起码失败4次,所以直接就是

=0.1296
  • 几何分布的期望与方差

几何分布小结:

  1. 进行多次相互独立试验,每一次试验都存在成功或失败的可能,我们关注的问题点是第一次成功需要试验多少次

二项分布

在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(Binomial Distribution)。

和几何分布不同的是,在二项分布中,我们关注的是获得成功的次数

X~B(n,p)

P(X=r) =

其中,q = 1-p,

二项分布的期望与方差

E(X)=np

Var(X)=npq

2ed27d3b01e7d3f0f3812e311db77ba8.png

小栗子:

有一个游戏,游戏中一共有5个问题,每一题答对的概率是0.25

  1. 答对两题的概率是多少?

题目中,关注的是成功的次数,所以使用二项分布

P(X=2) =

= 0.264

2. 答对3题的概率

同上,P(X=3)=

=0.088

3. 答对两题或3题的概率是多少

因为是独立试验,所以只要将1,2中的概率相加即可

P(X=2或X=3) = 0.264+0.088=0.352

4. 一题也答不对的概率是多少

P(X=0) =

=0.237

5. 期望和方差是多少

E(X)=5*0.25=1.25

Var(X)=5X0.25X0.75=0.9375

泊松分布

泊松分布和几何分布、二项分布不同,它有几个条件:

  1. 单独事件在给定的区间内随机、独立地发生,给定区间可以是时间或空间;
  2. 已知该区间内的事件平均发生次数(或发生率),且为有限数值,该事件平均发生次数用
    表示

泊松分布,通常写作:X~Po(

)

在求给定区间内发生r次事件的概率时,公式为:

P(X=r) =

自然指数e,其值约为:2.71828182845904523536

泊松分布的期望和方差

如果,X~Po(

),则

E(X)=

,Var(X)=

小栗子:

假设一个爆米花机,发生损坏的概率是每周3.4次,那么

  1. 下一周爆米花机不发生故障的概率是多少?

不发生故障,也就是X=0

P(X=0) =

= 0.033373

2. 下一周发生3次故障的概率是多少?

P(X=3) =

=0.21867
泊松分布和其他分布的区别:
泊松分布不需要一系列的试验,但它描述了事件在特定区间内的发生次数

如果X~Po(

),且Y~Po(
),则

X+Y ~ Po(

)

即,如果X,Y符合泊松分布,那么X+Y 也符合泊松分布

泊松分布与二项分布

当n很大,且p很小时,可以用X~Po(np)近似代替X~B(n,p)

当n大于50且p小于0.1时,为典型的近似情况。

小栗子:

一个学生要参加考试,但他没有做任何复习,他需要猜测每一题的答案,每一题答对的概率是0.05,一共有50道题,他答对5题的概率是多少?

看题目的话,是符合二项分布的

P(X=5) =

=0.06584

使用泊松分布来算的话,就是

X~Po(2.5)

=0.0668

结果的确很近似


目录:

橘猫吃不胖:《深入浅出统计学》-读书笔记-正态分布的应用​zhuanlan.zhihu.com
058dea5eca92b13b73ce5ee14a51883f.png
橘猫吃不胖:《深入浅出统计学》-读书笔记-再谈正态分布的应用​zhuanlan.zhihu.com
058dea5eca92b13b73ce5ee14a51883f.png
橘猫吃不胖:《深入浅出统计学》-读书笔记-信息化图形​zhuanlan.zhihu.com
058dea5eca92b13b73ce5ee14a51883f.png
橘猫吃不胖:《深入浅出统计学》-读书笔记-集中趋势的量度​zhuanlan.zhihu.com
058dea5eca92b13b73ce5ee14a51883f.png
橘猫吃不胖:《深入浅出统计学》-读书笔记-分散性与变异性的量度​zhuanlan.zhihu.com
058dea5eca92b13b73ce5ee14a51883f.png
橘猫吃不胖:《深入浅出统计学》-读书笔记-概率计算​zhuanlan.zhihu.com
058dea5eca92b13b73ce5ee14a51883f.png
橘猫吃不胖:《深入浅出统计学》-读书笔记-离散概率分布​zhuanlan.zhihu.com
058dea5eca92b13b73ce5ee14a51883f.png
橘猫吃不胖:《深入浅出统计学》-读书笔记-排列与组合​zhuanlan.zhihu.com
058dea5eca92b13b73ce5ee14a51883f.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值