《深入浅出统计学》,读书笔记,第七章:几何分布、二项分布、泊松分布
几何分布
几何分布(Geometric distribution)是离散型概率分布
其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。
小栗子:
理查在练习滑雪,他在任意一次试滑中(每次试滑都独立),不出事故顺利抵达终点的概率是0.2,求,他试滑一次或者两次就能抵达终点的概率是多少
他每一次试滑,到终点的概率是0.2,也就是第一次成功的概率是0.2,第一次失败,第二次成功的概率是0.8*0.2=0.16,因为事件相互独立,所以他一次或者两次试滑抵达终点的概率是0.36
这是书中,一开始提到的例子,用来引出几何分布的,假设我们要求他100次内抵达终点的概率?如果手工计算就太麻烦了。
几何分布有几个特点:
- 一系列相互独立的试验
- 每一次试验,既有成功的可能,也有失败的可能
- 要求的是为了取得第一次成功需要进行多少次试验
p是成功的概率,(1-p)是失败的概率
几何分布的众数是1,而且,X=1是具有最大概率的数,也就是说,成功的概率在第一次试验时达到最大
上述公式,可以进行延伸,
表示,为了获得一次成功,试验r次以上的概率是,试验r次以上,也就是要失败r次,失败的概率是1-p,所以
也可推导出
几何分布的期望是
小栗子:
另一位滑雪者,顺利滑到坡底的概率是0.4
- 第一次滑雪失败,第二次成功的概率是?
P(X=2) = 0.4*0.6=0.24
2. 第四次,或者不足四次就滑雪成功的概率是?
P(X<=4) =
3. 四次以上才活得成功的概率是?
由上面的公式可以知道:P(X>4)+P(X<=4)=1
所以,P(X>4) = 1-0.8704 = 0.1296
哦,这里不用套这个公式,直接使用
4次以上才成功,也就是,起码失败4次,所以直接就是
- 几何分布的期望与方差
几何分布小结:
- 进行多次相互独立试验,每一次试验都存在成功或失败的可能,我们关注的问题点是第一次成功需要试验多少次
二项分布
在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(Binomial Distribution)。
和几何分布不同的是,在二项分布中,我们关注的是获得成功的次数
X~B(n,p)
P(X=r) =
其中,q = 1-p,
二项分布的期望与方差
E(X)=np
Var(X)=npq
小栗子:
有一个游戏,游戏中一共有5个问题,每一题答对的概率是0.25
- 答对两题的概率是多少?
题目中,关注的是成功的次数,所以使用二项分布
P(X=2) =
2. 答对3题的概率
同上,P(X=3)=
3. 答对两题或3题的概率是多少
因为是独立试验,所以只要将1,2中的概率相加即可
P(X=2或X=3) = 0.264+0.088=0.352
4. 一题也答不对的概率是多少
P(X=0) =
5. 期望和方差是多少
E(X)=5*0.25=1.25
Var(X)=5X0.25X0.75=0.9375
泊松分布
泊松分布和几何分布、二项分布不同,它有几个条件:
- 单独事件在给定的区间内随机、独立地发生,给定区间可以是时间或空间;
- 已知该区间内的事件平均发生次数(或发生率),且为有限数值,该事件平均发生次数用
表示
泊松分布,通常写作:X~Po(
在求给定区间内发生r次事件的概率时,公式为:
P(X=r) =
自然指数e,其值约为:2.71828182845904523536
泊松分布的期望和方差
如果,X~Po(
E(X)=
小栗子:
假设一个爆米花机,发生损坏的概率是每周3.4次,那么
- 下一周爆米花机不发生故障的概率是多少?
不发生故障,也就是X=0
P(X=0) =
2. 下一周发生3次故障的概率是多少?
P(X=3) =
泊松分布和其他分布的区别:
泊松分布不需要一系列的试验,但它描述了事件在特定区间内的发生次数
如果X~Po(
X+Y ~ Po(
即,如果X,Y符合泊松分布,那么X+Y 也符合泊松分布
泊松分布与二项分布
当n很大,且p很小时,可以用X~Po(np)近似代替X~B(n,p)
当n大于50且p小于0.1时,为典型的近似情况。
小栗子:
一个学生要参加考试,但他没有做任何复习,他需要猜测每一题的答案,每一题答对的概率是0.05,一共有50道题,他答对5题的概率是多少?
看题目的话,是符合二项分布的
P(X=5) =
使用泊松分布来算的话,就是
X~Po(2.5)
结果的确很近似
目录:
橘猫吃不胖:《深入浅出统计学》-读书笔记-正态分布的应用zhuanlan.zhihu.com