《深入浅出统计学(中文版)》读书笔记【全15章】

这是一篇关于《深入浅出统计学(中文版)》的读书笔记,涵盖统计学基本概念,如信息图形化、概率计算、离散分布和连续分布(特别是正态分布)。文章详细解释了概率空间、条件概率、期望、方差、标准差等,并介绍了统计抽样、置信区间、假设检验和卡方分布的应用。
摘要由CSDN通过智能技术生成

前言

很基础的一些统计学知识。

正文

1 信息图形化

在这里插入图片描述


2 集中趋势的度量

在这里插入图片描述


3 分散性与变异性的量度

在这里插入图片描述


4 概率计算

发 生 事 件 A 的 概 率 = 发 生 实 践 A 的 可 能 数 目 所 有 可 能 结 果 的 数 目 发生事件A的概率=\frac{发生实践A的可能数目}{所有可能结果的数目} A=A

P ( A ) = n ( A ) n ( S ) P(A) = \frac{n(A)}{n(S)} P(A)=n(S)n(A)

S S S:概率空间,样本空间,表示所有可能结果的集合。可能发生的时间都是 S S S的子集。

事件 释义 维恩图
对立事件 A ′ A' A A ′ A' A A A A的对立事件,即事件 A A A不可能发生的事件,它的概率为 P ( A ′ ) = 1 − P ( A ) P(A')=1-P(A) P(A)=1P(A) 在这里插入图片描述
互斥事件 如果两个事件是互斥事件,则只有其中一个事件会发生 在这里插入图片描述
相交事件 如果两个事件相交,则这两个事件有可能同时发生 在这里插入图片描述
集合 维恩图
交集 ∩ \cap 在这里插入图片描述
并集 ∪ \cup 在这里插入图片描述

为了求出以事件A或B为结果的概率,可以使用下列算法:
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B)=P(A)+P(B)-P(A \cap B) P(AB)=P(A)+P(B)P(AB)

  • 条件概率
    以事件 B B B为已知条件的事件 A A A的概率(假定B已发生,根据这个假设算出事件A的发生概率):
    P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A\cap B)}{P(B)} P(AB)=P(B)P(AB)

如果 A A A B B B互斥,那么 P ( A ∩ B ) = 0 P(A\cap B)=0 P(AB)=0 P ( A ∣ B ) = 0 P(A|B)=0 P(AB)=0

全概率公式(根据条件概率计算一个特定事件的全概率):
P ( B ) = P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) P(B)=P(A)*P(B|A)+P(A')*P(B|A') P(B)=P(A)P(BA)+P(A)P(BA)
贝叶斯定理(计算逆条件概率):
P ( A ∣ B ) = P ( A ) ∗ P ( B ∣ A ) P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) P(A|B)=\frac{P(A)*P(B|A)}{P(A)*P(B|A)+P(A')*P(B|A')} P(AB)=P(A)P(BA)+P(A)P(BA)P(A)P(BA)

事件 释义
相关事件 如果几个事件互有影响,则为相关事件
独立事件 如果几个事件互不影响,则为独立事件

对于独立事件来说:
P ( A ∣ B ) = P ( A ) P(A | B)=P(A) P(AB)=P(A)(独立性检验)
P ( A ∩ B ) = P ( A ) ∗ P ( B ) P(A\cap B)=P(A)*P(B) P(AB)=P(A)P(B)

如果A、B是互斥事件,则二者不会是独立事件;如果A、B是独立事件,则二者不会是互斥事件。(互斥意味着相关)


5 离散概率分布的运用

  • 期望
    E ( X ) = ∑ x P ( X = x ) E(X)= \sum xP(X=x) E(X)=xP(X=x)

  • 方差
    V a r ( X ) = E ( X − μ ) 2 = ∑ ( x − μ ) 2 P ( X = x ) Var(X)=E(X-\mu)^2=\sum(x-\mu)^2P(X=x) Var(X)=E(Xμ)2=(xμ)2P(X=x)

  • 标准差
    σ = V a r ( X ) \sigma=\sqrt{Var(X)} σ=Var(X)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值