《深入浅出统计学(中文版)》读书笔记
前言
很基础的一些统计学知识。
正文
1 信息图形化
2 集中趋势的度量
3 分散性与变异性的量度
4 概率计算
发 生 事 件 A 的 概 率 = 发 生 实 践 A 的 可 能 数 目 所 有 可 能 结 果 的 数 目 发生事件A的概率=\frac{发生实践A的可能数目}{所有可能结果的数目} 发生事件A的概率=所有可能结果的数目发生实践A的可能数目
P ( A ) = n ( A ) n ( S ) P(A) = \frac{n(A)}{n(S)} P(A)=n(S)n(A)
S S S:概率空间,样本空间,表示所有可能结果的集合。可能发生的时间都是 S S S的子集。
事件 | 释义 | 维恩图 |
---|---|---|
对立事件 A ′ A' A′ | A ′ A' A′是 A A A的对立事件,即事件 A A A不可能发生的事件,它的概率为 P ( A ′ ) = 1 − P ( A ) P(A')=1-P(A) P(A′)=1−P(A) | |
互斥事件 | 如果两个事件是互斥事件,则只有其中一个事件会发生 | |
相交事件 | 如果两个事件相交,则这两个事件有可能同时发生 |
集合 | 维恩图 |
---|---|
交集 ∩ \cap ∩ | |
并集 ∪ \cup ∪ |
为了求出以事件A或B为结果的概率,可以使用下列算法:
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B)=P(A)+P(B)-P(A \cap B) P(A∪B)=P(A)+P(B)−P(A∩B)
- 条件概率
以事件 B B B为已知条件的事件 A A A的概率(假定B已发生,根据这个假设算出事件A的发生概率):
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A\cap B)}{P(B)} P(A∣B)=P(B)P(A∩B)
如果 A A A与 B B B互斥,那么 P ( A ∩ B ) = 0 P(A\cap B)=0 P(A∩B)=0且 P ( A ∣ B ) = 0 P(A|B)=0 P(A∣B)=0
全概率公式(根据条件概率计算一个特定事件的全概率):
P ( B ) = P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) P(B)=P(A)*P(B|A)+P(A')*P(B|A') P(B)=P(A)∗P(B∣A)+P(A′)∗P(B∣A′)
贝叶斯定理(计算逆条件概率):
P ( A ∣ B ) = P ( A ) ∗ P ( B ∣ A ) P ( A ) ∗ P ( B ∣ A ) + P ( A ′ ) ∗ P ( B ∣ A ′ ) P(A|B)=\frac{P(A)*P(B|A)}{P(A)*P(B|A)+P(A')*P(B|A')} P(A∣B)=P(A)∗P(B∣A)+P(A′)∗P(B∣A′)P(A)∗P(B∣A)
事件 | 释义 |
---|---|
相关事件 | 如果几个事件互有影响,则为相关事件 |
独立事件 | 如果几个事件互不影响,则为独立事件 |
对于独立事件来说:
P ( A ∣ B ) = P ( A ) P(A | B)=P(A) P(A∣B)=P(A)(独立性检验)
P ( A ∩ B ) = P ( A ) ∗ P ( B ) P(A\cap B)=P(A)*P(B) P(A∩B)=P(A)∗P(B)
如果A、B是互斥事件,则二者不会是独立事件;如果A、B是独立事件,则二者不会是互斥事件。(互斥意味着相关)
5 离散概率分布的运用
-
期望
E ( X ) = ∑ x P ( X = x ) E(X)= \sum xP(X=x) E(X)=∑xP(X=x) -
方差
V a r ( X ) = E ( X − μ ) 2 = ∑ ( x − μ ) 2 P ( X = x ) Var(X)=E(X-\mu)^2=\sum(x-\mu)^2P(X=x) Var(X)=E(X−μ)2=∑(x−μ)2P(X=x) -
标准差
σ = V a r ( X ) \sigma=\sqrt{Var(X)} σ=Var(X)