t分布f分布与样本均值抽样分布_常见的统计分布--数据分析

这篇博客详细介绍了离散型和连续型概率分布,包括二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布和正态分布。同时,讲解了三大抽样分布——卡方分布、t分布和F分布,以及它们在统计推断中的应用,如t检验和F检验。此外,还探讨了分布间的联系,如大数定律、中心极限定理和标准误的概念。
摘要由CSDN通过智能技术生成

bf0e85707899ad49e1fd7548cc46b6aa.png

大纲:

  1. 常见的离散型概率分布(二项,几何,超几何,泊松)
  2. 常见的连续型概率分布(指数,正态,均匀)
  3. 三大抽样分布(卡方,t,F)
  4. 一些推论和分布之间的关系

离散型分布

  • 二项分布

实验重复n次,每次实验相互独立(伯努利实验),实验有两种结果,成功概率p,失败概率1-p。

在二项分布中,我们关注的是在n次试验中成功的次数(区别于几何分布)。

举个栗子:

当我们要计算抛硬币n次,恰巧有x次正面朝上的概率,可以使用二项分布的公式:

d2ad68fec328111089a903738b652afa.png

二项概率的数学期望为E(x) = np,方差D(x) = np(1-p)。


  • 几何分布

几何分布(英语:Geometric distribution)指的是以下两种离散型概率分布中的一种:

  • 在伯努利试验中,得到一次成功所需要的试验次数 X
  • 在得到第一次成功之前所经历的失败次数 X
n重伯努利实验

在第X次成功的概率:

2f46212f332e7290c75aec67068f01f2.png

5980955b32c0bb5ff240bdf0934086b9.png

  • 超几何分布

超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的个数(不归还 (without replacement))。

例如:从N个样本中抽取n个,N个中有r个不合格的,求抽到x个不合格样本的概率。

超几何分布的概率分布,均值和方差:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值