大纲:
- 常见的离散型概率分布(二项,几何,超几何,泊松)
- 常见的连续型概率分布(指数,正态,均匀)
- 三大抽样分布(卡方,t,F)
- 一些推论和分布之间的关系
离散型分布
- 二项分布
实验重复n次,每次实验相互独立(伯努利实验),实验有两种结果,成功概率p,失败概率1-p。
在二项分布中,我们关注的是在n次试验中成功的次数(区别于几何分布)。
举个栗子:
当我们要计算抛硬币n次,恰巧有x次正面朝上的概率,可以使用二项分布的公式:
二项概率的数学期望为E(x) = np,方差D(x) = np(1-p)。
- 几何分布
几何分布(英语:Geometric distribution)指的是以下两种离散型概率分布中的一种:
- 在伯努利试验中,得到一次成功所需要的试验次数 X
- 在得到第一次成功之前所经历的失败次数 X
n重伯努利实验
在第X次成功的概率:
- 超几何分布
超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的个数(不归还 (without replacement))。
例如:从N个样本中抽取n个,N个中有r个不合格的,求抽到x个不合格样本的概率。
超几何分布的概率分布,均值和方差: