拉普拉斯算子属于卷积方法吗_三代图卷积网络理论

1、图卷积定义

炫云:从二维卷积经过图傅里叶变换到图卷积​zhuanlan.zhihu.com
dc00094f4feb62773b58d9f49649c717.png
炫云:拉普拉斯矩阵的谱分解,谱图卷积,图卷积演变过程​zhuanlan.zhihu.com
dc00094f4feb62773b58d9f49649c717.png

第一代图卷积

论文来源:《Spectral Networks and Deep Locally Connected Networks on Graphs》

第一代图卷积的计算方法就直接根据 从二维卷积经过图傅里叶变换到图卷积中的(4)(6)推出

虽然利用上式已经可以构造深度网络进行图卷积运算了,但该版本有不少缺点:

  1. 没有local信息。每次卷积都是所有顶点都参与运算,没有实现局部卷积和参数共享。
  2. 运算量大。每次卷积都要进行拉普拉斯矩阵分解和矩阵相乘,计算复杂度为
  3. 参数量大。每个卷积核参数量为

第二代图卷积

文章来源:
《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》

针对第一代图卷积中存在的问题,学者基于切比雪夫多项式提出第二代GCN:ChbeyNet

首先回顾下图傅里叶计算公式:

可知函数和特征值密切相关,令

为拉普拉斯矩阵
特征值函数

以拉普拉斯矩阵的特征值作为卷积核同样存在缺陷:

  • 不具备局部连接性;
  • 时间复杂度为 O(n);

为了克服上述缺陷引入 K 阶多项式:

其中,参数

是多项式系数,因此滤波器具有了
阶局部性,复杂度也降低到

将式代入第一代图卷积式(1)中可得:

其中 σ 是激活函数,计算时间复杂度为

,因为对于静态图而言
是固定的,
可以提前计算得到。如果使用稀疏矩阵乘法(pytorch里有封装),时间复杂度是
其中
是稀疏矩阵中非零元的个数表示图中边的数量。 此时计算图卷积就不需要再乘上特征向量矩阵 U,而是直接使用拉普拉斯矩阵 L 的 k 次方,就避免了进行特征分解。

因为

很大的时候并不稀疏( |E| 接近
),所以文中提出了利用切比雪夫多项式展开(任何k次多项式都可以通过切比雪夫多项式展开)来近似
,切比雪夫多项式递归式为:

因此根据上式可知:

其中,

;
是指拉普拉斯矩阵L的最大特征值。

PS:因为切比雪夫多项式的输入要在 [−1,1] 之间,由于拉普拉斯矩阵的半正定性,所以所有的特征值都是大于等于 0 的,将其除以最大特征值可以将特征压缩到 [0,1] 区间内,现在需要将其压缩到 [−1,1]。

可以得到:

阶多项式,且有
,其中,

这样,我们就得到了第二代图卷积:

这个表达式为拉普拉斯多项式中的一个 k 阶近似函数,依赖于节点的 k 阶邻域(k 步可达),时间复杂度与边呈线形相关。

总结第二代图卷积优点如下:

  • 运算量相比第一代的
    可以降到
  • 引入K-hop感受野,可以捕捉局部特征。

第三代图卷积

文章来源:《Semi-supervised Classification with Graph Convolutional Networks》

第二代图卷积解决了拉普拉斯矩阵特征分解的问题,但是在计算图卷积操作时矩阵乘法时间复杂度为

,在此基础上优化Kipf等人提出了目前流行的 GCN。

GCN 通过式(3)进行多层卷积层进行叠加,而每层都会逐点进行非线性叠加。考虑到时间复杂度问题,令

,也就是说得到了一个拉普拉斯算子的
二阶近似函数。既可以对网络进行卷积操作计算量增加不大。通过 叠加层数可以提升模型的非线性。

归一化的拉普拉斯矩阵的特征值区间为 [0,2],令

可得:

其中,

是切比雪夫系数且仅存的两个参数!

在GCN的训练过程中需要规范化参数避免过拟合,令

,由式可得:

注意

的特征值范围在 [0, 2] 之间,所以如果在很深的网络中会引起梯度爆炸的问题,需要再次进行一次归一化(Renormalization trick):

把上式从标量推广到矩阵,对于输入顶点的向量

,其中 N 为节点数,C 为顶点的特征向量维度,可得:

其中,

是参数矩阵,
是卷积后的顶点特征,时间复杂度为

根据上式一层卷积,多层图卷积计算公式公式为:

其中,

,A 为邻接矩阵,
为单位矩阵,所以
为添加自连接的邻接矩阵;
为顶点的度数矩阵;
为神经网络第 l 层的权重矩阵;
是激活函数;
是第
层的激活矩阵,并且
是由顶点的特征向量组成矩阵。

总结第三代图卷积:

  • 令K=1,相当于只考虑1-hop 邻点。通过堆叠层数来增加感受野。
  • 每层计算复杂度降低为

总结

CNN 中的卷积无法直接应用于网络图中,所以引出了谱图理论和图中的傅里叶变换,进而定义图卷积的计算方法,最后结合深度学习发展出来 GCN。

参考:

拉普拉斯矩阵的谱分解,谱图卷积,图卷积演变过程

从二维卷积经过图傅里叶变换到图卷积

图卷积的通式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值