拉普拉斯算子属于卷积方法吗_图卷积神经网络系列:1. | 谱域卷积与拉普拉斯...

945988ff52723869c04309c59e059dbc.png

在经典卷积网络中,对于输入数据有如下要求:

  • 只能处理固定输入维度的数据
  • 局部输入数据必须有序

语音、图像、视频等规则结构数据满足以上要求,但是并不适用于图结构数据。

433a02b77fc543395aa66fbdfde6205e.png

那么,如何将卷积操作扩展到图结构数据中呢?

图卷积中,大致分为两类:

  • 谱域图卷积
  1. 根据图谱理论和卷积定理,将数据由空域转换到谱域做处理
  2. 理论基础坚实
  • 空域图卷积
  1. 不依靠图谱卷积理论,直接在空间上定义卷积操作。
  2. 定义知观,灵活性更强。

一 、谱域图卷积简介

1. 什么是卷积?

根据卷积定理,两信号在空域(或时域)的卷积的傅里叶变换等于这俩个信号在频域中的傅里叶变换的乘积:

其中,

为空域上的信号,
为频域上的信号,
为傅里叶变换。
表示卷积,
表示乘积。

也可以通过反变换的形式来表达:

其中,

为傅里叶反变换。其中:

e7a70d195570c603c9fb64414fc868e5.png

如此卷积操作有什么意义呢?

  • 将空域型号转换到频域,然后相乘。
  • 将相乘的结果再转换到空域。

2. 如何定义图上的傅里叶变换呢?

回到我们想要探讨的图结构中,如何定义图上的傅里叶变换呢?

基于图谱理论,我们可以使用图傅里叶变换。

经典傅里叶变换如下:

图傅里叶变换如下:


二、拉普拉斯矩阵(Laplacian Matrix)

1 . 拉普拉斯矩阵的符号定义

  • 无向图
    ,其中
  • 邻接矩阵
  • 度矩阵
    ,

2 . 拉普拉斯矩阵的定义

定义:度矩阵减去邻接矩阵。

c717b431236f11d67abaa086686dd9b6.png

3 . 拉普拉斯矩阵是对称半正定矩阵

证明如下:

对任意向量

,有:

也就是说,

是对称半正定矩阵。

那么作为半正定矩阵,拉普拉斯矩阵有哪些性质呢?

  • n阶对称矩阵一定有n个线性无关的特征向量。
  • 对称矩阵的不同特征值对应的特征向量相互正交,这些正交的特征向量构成的矩阵为正交矩阵。
  • 实对称矩阵的特征向量一定是实向量。
  • 半正定矩阵的特征值一定非负。

4 . 拉普拉斯矩阵的谱分解

特征分解,又称谱分解,是将矩阵分解为其特征值特征向量表示的矩阵之积的方法。

上一小节中有说到,n阶对称矩阵一定有n个线性无关的特征向量。n维线性空间中的n个线性无关的向量都可以构成它的一组基。i.e. 下图中,当我们在这个空间中再画一个向量,这个向量都可以用下图中u1和u2来线性表示。

71d5be87bc3e4f9a748e561683271e21.png

根据矩阵论的知识,对称矩阵的不同特征值对应的特征向量相互正交,这些正交的特征向量构成的矩阵为正交矩阵。

➢ 拉普拉斯矩阵的n个特征向量是n维空间中的一组标准正交基。

4e6d7184a4e1de07c198093554f0c37b.png

5 . 拉普拉斯矩阵与拉普拉斯算子

重要结论:拉普拉斯矩阵是图上的一种拉普拉斯算子。

5.1 拉普拉斯算子

定义:

,也就是:拉普拉斯算子表示为梯度的散度。

对于n维欧几里得空间,我们可以认为拉普拉斯算子是一个二阶微分算子。即在各个维度求二阶导数后求和。

在3维欧几里得空间,对于一个三元函数

,我们可以得到:

5.2 离散情况下欧氏空间的拉普拉斯算子

➢ 离散函数的二阶导数

类似的,对于两个变量的函数

(如图像),在 y 方向也有

那么两个变量的离散拉普拉斯算子可以写成:

5.3 图上的拉普拉斯算子

欧式空间内,二维的拉普拉斯算子可以理解为中心节点与周围节点的差值,然后求和:

类似地,在图上的拉普拉斯算子定义如下:

其中,

,代表n个节点上每个节点的信号。

当有权重时, 图上拉普拉斯算子定义调整为:

可以理解为中心节点依次减去周围节点,乘以权重后,然后求和:

对于n个节点有:

得到结论:拉普拉斯矩阵是图上的一种拉普拉斯算子。

6 . 总结

  • ➢ 拉普拉斯矩阵的n个特征向量是n维空间中的一组标准正交基
  • ➢ 实数拉普拉斯矩阵的特征向量一定是实向量。
  • ➢ 拉普拉斯矩阵的特征值一定非负。
  • ➢ 拉普拉斯矩阵是图上的一种拉普拉斯算子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值