自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(72)
  • 收藏
  • 关注

原创 Self-supervised Learning 中的 Contrastive Learning

目前大多数深度学习的方法都依赖于人类所标注的信息,但是这会造成一些问题:数据内部的结构信息比标注提供的信息要丰富,而监督方法忽视其重要性;通过标签信息所训练得到的模型通常用于解决特定的任务,而不能作为知识一样可以被重新利用。因此,自监督学习通过数据本身的信息来完成表征的学习。而且在Downstream( Pacal VOC检测)任务上,已经能比肩或超过监督方法。通常,自监督学习通过构建一些不专注于像素细节的表征(representation learning)而对高层特征进行编码而区分不同对象。

2020-11-21 10:57:40 16

原创 detach()详解 -- Python/Pytorch 学习

def detach(self): """Returns a new Variable, detached from the current graph. Result will never require gradient. If the input is volatile, the output will be volatile too. .. note:: Returned Variable uses the same data tensor, as the

2020-11-16 09:20:29 16

原创 Bilinear CNN Models for Fine-grained Visual Recognition 通过双线性CNN的细粒度模式识别

Abstract双线性模型包括了两个特征提取网络,图像的特征表达随后通过对这两个特征提取网络的输出做外积然后池化而得到。该方法能更好地提取对细粒度分类有用的local pairwise特征。Introduction第一段:细粒度识别任务的挑战。第二段:常用的方法包括检测目标的不同部位;缺点:标注比收集image更难/手工选取的part不是optimal的。第三段:另一种方法:使用robust image representation,如VLAD、Fisher vector等。尽管这些方法.

2020-11-09 08:50:48 11

原创 Beyesian Neural Network贝叶斯神经网络

贝叶斯主要求解方法有两种:基于采样的马尔可夫链蒙特卡罗方法(MCMC);基于近似的变分推断(VI)方法先介绍变分推断的特例:贝叶斯神经网络。左图是普通的全连接网络,右边是贝叶斯神经网络。...

2020-11-07 22:35:45 13

原创 Non-parameteric Model 非参数化模型 VS Parameteric Model 参数化模型

“非参数”并不意味着没有参数,而是该参数是灵活的并且可以变化。参数化模型能够根据相关的度量,如均值、中位数、方差等来推断观测值。但通常非参数模型不能假设数据来自正态分布(尽管有些非参数模型分布是整体分布)。尽管参数化模型有着更准确的对数据的预测,但是非参数化模型不需要依赖均值、中位数等。...

2020-11-07 13:04:06 3

原创 Dirichlet Distribution狄利克雷分布 / Latent Dirichlet Allocation (LDA)隐藏狄利克雷概念的理解

目录:Dirichlet Distribution 狄利克雷分布Bayesian Generative Models 贝叶斯生成模型Mixture Models and the EM algorithm 混合模型及EM算法Latent Semantic Indexing (LSA)Latent Dirichelt Allocation (LDA)Dirichlet Distribution 狄利克雷分布定义: 狄利克雷分布 Dir(a) 是由一个向量 theta(全为正实数) 所表示

2020-11-07 09:24:01 46

原创 Depthwise卷积与Pointwise卷积

原文:https://blog.csdn.net/tintinetmilou/article/details/81607721Depthwise(DW)卷积与Pointwise(PW)卷积,合起来被称作Depthwise Separable Convolution,该结构和常规卷积操作类似,可用来提取特征,但相比于常规卷积操作,其参数量和运算成本较低。所以在一些轻量级网络中会碰到这种结构如MobileNet。常规卷积操作对于一张5×5像素、三通道彩色输入图片(shape为5×5×3)。经过3×3卷积核

2020-10-21 22:48:02 9

原创 如何在linux命令行(终端)不依赖jupyter执行ipynb 文件

安装 runipypip install runipy终端执行ipynbrunipy <YourNotebookName>.ipynb

2020-10-19 08:30:47 43

原创 RuntimeError: copy_if failed to synchronize: device-side assert triggered

在使用pytorch训练的时候提示RuntimeError: copy_if failed to synchronize: device-side assert triggered错误有两个方法可以尝试去解决一下:1.尝试减少学习率试试看能不能解决这个问题,如果不能,请看第二种方法2.看看config文件中设置的类别数目与数据中实际的类别数目是否一致,注意对于目标检测需要根据实际的类别数+1(背景)...

2020-10-14 08:43:56 20

原创 Discriminative Learning (判别式学习)和Generative Learning(生成式学习)

Discriminative Learning给定一个观测值x,判别式模型(discriminative model)是目标Y的条件概率,即P(Y∣X=x)P(Y|X =x)P(Y∣X=x)。举个例子:(猫狗分类)Try to find a straight line (decision boundary) that can separates the cats and dogs.寻找一个分类边界来将cats和dogs的数据分开。Check which side of the new data..

2020-10-07 06:31:51 27

原创 Domain Adaption 领域自适应

定义(from Wiki):Domain Adaption是transfer leanring(迁移学习)中很重要的一项内容。主要目的是将具有不同分布的(data distribution)的具有标签(label)的源域(source domain)和不带标签的目标域(target domain) 映射(map)到同一个特征空间(embedding mainfold)。数学化(Formalization)X,YX, YX,Y 分别为输入空间和输出空间;Machine Leanring 算法的..

2020-10-06 19:22:39 49

原创 快照式高光谱相机 (Why Snapshot saves time - and money)

摘要 快照式高光谱视频相机比普通高光谱的优势在哪? 这种新技术和原来的有什么不同? 是怎么提高应用的?Introduction 快照式高光谱视频相机比普通高光谱的优势在哪? 快照式高光谱相机最大的优势在于它对入射光的高效利用。之前的高光谱相机有一个共同的点:只使用了一小部分的入射光来成像。 快照式高光谱相机能一次完成datacube的成像。 快照式技术的优点: 速度的提升:...

2020-09-29 15:05:27 52

原创 人工智能中的视频光谱技术(Video Spectroscopy meets Artificial Intelligence)

原文链接:Video Spectroscopy meets Artificial Intelligence (from Cubert) 随着功能强大的计算机(甚至在最小的设备中)可用性的不断提高,我们看到成像技术在工业和日常产品中的使用越来越多。人工智能和机器学习提高了我们的图像传感器功能。大多数算法依赖于灰度或RGB图像。同时他们也忽视了光的重要部分信息。 光谱图像在原有的二维几何图像中拓展了一维光谱信息。光谱信息从可见光到近红外光,通过将光谱跨度分为很小而得到。这些信息能提供RBG图...

2020-09-29 11:49:32 328

原创 高光谱成像 Hyperspectral Imaging

Introduction to Hyperspectral Imaging 高光谱成像的介绍高光谱成像指具有多光谱分辨率的数字图像,每个高光谱图像中的空间点(pixel)包含了一条连续的曲线用于记录不同波段下的光强(light intensity)。如下图所示,红、绿、蓝三条曲线记录了三个pixel分别在不同波段下的值。高光谱图像数据也能理解为堆砌不同波段的图像(stack of images)。高光谱图像所提供的额外的信息能帮助区分不同物质,这有时在RGB图像中是很难区分的。高光谱已经在遥感、食.

2020-09-28 06:26:53 150

原创 Latex各种命令、符号、公式、数学符号、排版等

Latex各种命令、符号、公式、数学符号、排版等

2020-09-23 09:11:54 20

原创 Graphcut/ Grabcut 理解和Python实现

关于最小割最大流,GraphCut的理解可以看我另一篇博客:[最小割最大流 Minimum Cut-Max Flow/图割 Graph Cut的理解]

2020-09-22 10:27:48 41

原创 SCRDet

2020-09-20 14:15:21 28

原创 Basic Concept of Computer Vision 2020_09_19

ImageWhat is image?We think of an image as a function f or I: f(x, y) gives the intensity or value at position(x, y)Gray image (I(x, y))RBG image (r(x, y); g(x, y); b(x, y))Task 1:Transfer Gray image to RGB image and vice versa.

2020-09-19 15:03:42 11

原创 Ubuntu install Chrome

wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.debsudo dpkg -i google-chrome-stable_current_amd64.deb /usr/bin/google-chrome-stable

2020-09-17 08:50:55 5

原创 动态规划算法 (Dynamic Programming) 详解 / Python实现 / Leetcode例题

DP基本原理:问题的最优解可以由子问题的最优解推导得到,通过先求解子问题的最优解,在构造原问题的最优解DP设计步骤:把原始问题划分成一系列子问题;求解每个子问题仅一次,并保存到一个表中,后续使用的时候直接可以读取;自底向上地计算;DP三要素:最优子结构、边界、状态转移函数以走楼梯问题为例:有十个台阶,从上往下走,一次只能走一个或两个台阶,请问总共有多少种走法?最优子结构:我们来考虑要走到第十个台阶的最后一步,最后一步必须走到第八或者第九。边界:f(1) = 1, f(2) = 2

2020-09-15 09:05:58 31

原创 前序遍历、中序遍历、后续遍历的理解以及Python实现

前序遍历对于当前节点,先输出该节点,然后输出他的左孩子,最后输出他的右孩子。以上图为例,递归的过程如下:(1):输出 1,接着左孩子;(2):输出 2,接着左孩子;(3):输出 4,左孩子为空,再接着右孩子;(4):输出 6,左孩子为空,再接着右孩子;(5):输出 7,左右孩子都为空,此时 2 的左子树全部输出,2 的右子树为空,此时 1 的左子树全部输出,接着 1 的右子树;(6):输出 3,接着左孩子;(7):输出 5,左右孩子为空,此时 3 的左子树全部输出,3 的右子树为空,至..

2020-09-14 10:26:34 39

原创 Python之collections.namedtuple()以Resnet为例

from collections import namedtupleResnet = namedtuple( "Resnet", [ "index", "block_count", "return_features", ],)ResNet18 = tuple( Resnet(index = i, block_count = c, return_feautures = r) for (i, c, r) in ((1, 2, False), (2, 2, False), (3, 2

2020-09-10 12:05:43 57

原创 Python之torch.meshgrid()

输出的矩阵为第一个tensor的行和第二个tensor的列

2020-09-09 11:52:06 31

原创 算法之回溯法

2020-09-09 09:31:54 21

原创 Leetcode 09/09每日一题 (39. 组合总和)

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的数字可以无限制重复被选取。说明:所有数字(包括 target)都是正整数。解集不能包含重复的组合。示例 1:输入:candidates = [2,3,6,7], target = 7,所求解集为:[[7],[2,2,3]]Idea:回溯法+剪枝class Solution: def combinati

2020-09-09 08:56:48 30

原创 Python lambda 函数用法

例: 两数相加函数sum_lambda = lambda x, y: x+yprint(sum_lambda(4,6))lambda语句中,冒号前是参数,可以有多个,用逗号隔开,冒号右边的返回值。例:能否被3整除nums = [2, 18, 9, 22, 17, 24, 8, 12, 27]print(filter(lambda x: x%3 == 0, nums))其中filter函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。filter(function

2020-09-07 09:55:30 23

原创 Leetcode 09/06 每日一题 (347. 前 K 个高频元素)

给定一个非空的整数数组,返回其中出现频率前 k 高的元素。示例 1:输入: nums = [1,1,1,2,2,3], k = 2输出: [1,2]示例 2:输入: nums = [1], k = 1输出: [1]提示:你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。你可以按任意顺序返回答案。

2020-09-07 09:25:53 22

原创 Leetcode 09/06 每日一题 (107. 二叉树的层次遍历 II)

给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)例如:给定二叉树 [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7返回其自底向上的层次遍历为:[[15,7],[9,20], [3]]idea: 广度优先搜索从根节点开始,每次遍历同一层的全部节点,使用一个列表存储该层的节点值。def levelOrderBottom(self, root):

2020-09-06 09:41:26 28

原创 Python之torch.range() torch.arange()

2020-09-05 12:06:11 69

原创 Leetcode 09/05 每日一题 (60. 第k个排列)

给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:“123”“132”“213”“231”“312”“321”给定 n 和 k,返回第 k 个排列。说明:给定 n 的范围是 [1, 9]。给定 k 的范围是[1, n!]。示例 1:输入: n = 3, k = 3输出: "213"示例 2:输入: n = 4, k = 9输出: "2314"...

2020-09-05 07:40:10 28

原创 Leetcode 09/04 每日一题 (257. 二叉树的所有路径 )

给定一个二叉树,返回所有从根节点到叶子节点的路径。说明: 叶子节点是指没有子节点的节点。示例:输入: 1 / \2 3 \ 5输出: ["1->2->5", "1->3"]解释: 所有根节点到叶子节点的路径为: 1->2->5, 1->3思路与算法:深度优先搜索最直观的方法是使用深度优先搜索。在深度优先搜索遍历二叉树时,我们需要考虑当前的节点以及它的孩子节点。如果当前节点不是叶子节点,则在当前的路径末尾添加该节点,并继续递归

2020-09-04 11:52:10 34

原创 Python Raise 异常处理

Python 异常处理python提供了两个非常重要的功能来处理python程序在运行中出现的异常和错误。你可以使用该功能来调试python程序。异常处理: 本站Python教程会具体介绍。断言(Assertions):本站Python教程会具体介绍。python标准异常BaseException 所有异常的基类SystemExit 解释器请求退出KeyboardInterrupt 用户中断执行(通常是输入^C)Exception 常规错误的基类StopIteration 迭代器没有更多的

2020-09-04 09:29:40 38

原创 python pytorch之clamp()函数

torch.clamp(input, min, max, out=None) → Tensor将输入input张量每个元素的夹紧到区间 [min,max][min,max],并返回结果到一个新张量。

2020-09-04 09:07:48 142

原创 Leetcode 09/03 每日一题 (51. N 皇后)

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。上图为 8 皇后问题的一种解法。给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。示例:输入:4输出:[[".Q..", // 解法 1"...Q","Q...","..Q."],["..Q.", // 解法 2"Q...","...Q",".Q.."]]解释

2020-09-03 07:00:36 17

原创 Leetcode 0901每日一题 (486. 预测赢家)

给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。示例 1:输入:[1, 5, 2]输出:False解释:一开始,玩家1可以从1和2中进行选择。如果他选择 2(或者 1 ),那么玩家 2 可

2020-09-02 07:42:29 32

原创 Leetcode 09/02 每日一题 (剑指 Offer 20. 表示数值的字符串)

请实现一个函数用来判断字符串是否表示数值(包括整数和小数)。例如,字符串"+100"、“5e2”、"-123"、“3.1416”、"-1E-16"、“0123"都表示数值,但"12e”、“1a3.14”、“1.2.3”、"±5"及"12e+5.4"都不是。...

2020-09-02 07:41:13 24

原创 Python之logging模块介绍及使用

logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等;相比print,具备如下优点:可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息; print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据;logging则可以由开发者决定将信息输出到什么地方,以及怎么输出;# 获取logger实例,如果参数为空则返回root loggerlogger = logging.

2020-09-01 10:50:06 20

原创 python-yacs库的用法

原文:https://blog.csdn.net/wxtcstt/article/details/106851999YACS 是一个轻量级的用来管理系统配置参数的库,使用*.YAML格式的文件进行参数的存储使用方法:1. 创建一个yaml文件如config.yamlGPUS: (0,1,2,3)OUTPUT_DIR: 'output'CUDNN: ENABLED: trueMODEL: NAME: 'yolo' PRETRAINED: 'xx.pth' EXTRA: FINAL

2020-08-31 10:16:45 89

原创 python之argparse --- 命令行选项、参数和子命令解析器

创建一个解析器使用 argparse 的第一步是创建一个 ArgumentParser 对象:parser = argparse.ArgumentParser(description='Process some integers.')添加参数给一个 ArgumentParser 添加程序参数信息是通过调用 add_argument() 方法完成的。通常,这些调用指定 ArgumentParser 如何获取命令行字符串并将其转换为对象。这些信息在 parse_args() 调用时被存储和使用.

2020-08-31 10:01:24 39

原创 Python之collections.deque 模块用法

collections 是 python 内建的一个集合模块,里面封装了许多集合类,其中队列相关的集合只有一个:deque。deque 是双边队列(double-ended queue),具有队列和栈的性质,在 list 的基础上增加了移动、旋转和增删等。常用方法:d = collections.deque([])d.append('a') # 在最右边添加一个元素,此时 d=deque('a')d.appendleft('b') # 在最左边添加一个元素,此时 d=deque(['b.

2020-08-31 08:34:22 36

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除