题目
解析
辅助数组解法,暂时能想到这个,太菜了
matrix_new[j][n-1-i] = matrix[i][j]表示第i行,复制到辅助数组的第j列,可以总结出这个表达式
class Solution {
public void rotate(int[][] matrix) {
//矩阵旋转[辅助数组时间复杂度O(n2),O(n2)]
//核心:matrix_new[j][n-1-i] = matrix[i][j],n=matrix.length
int n = matrix.length;
if(n == 1){
return;
}
int[][] matrix_new = new int[n][n];
for(int i = 0 ; i < n ; i++){
for(int j = 0 ; j < n ; j++){
//旋转后数组复制到辅助数组中
matrix_new[j][n-1-i] = matrix[i][j];
}
}
//将辅助数组替换原数组
for(int i = 0 ; i < n ; i++){
for(int j = 0 ; j < n ; j++){
matrix[i][j] = matrix_new[i][j];
}
}
}
}
原地旋转解法
空间复杂度变为O(1),不要复杂数组
class Solution {
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n / 2; ++i) {
for (int j = 0; j < (n + 1) / 2; ++j) {
int temp = matrix[i][j];
matrix[i][j] = matrix[n - j - 1][i];
matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
matrix[j][n - i - 1] = temp;
}
}
}
}