LeetCode Hot 100 --- 旋转数组(java)

本文详细介绍了两种矩阵旋转方法:一种是使用辅助数组实现矩阵的90度旋转,虽然空间复杂度为O(n^2),但思路清晰;另一种是原地旋转算法,通过交换元素实现旋转,空间复杂度降低到O(1)。这两种方法分别适用于不同的场景,对于理解矩阵操作有很好的启示作用。
摘要由CSDN通过智能技术生成

题目

在这里插入图片描述

解析

辅助数组解法,暂时能想到这个,太菜了

matrix_new[j][n-1-i] = matrix[i][j]表示第i行,复制到辅助数组的第j列,可以总结出这个表达式

class Solution {
    public void rotate(int[][] matrix) {
        //矩阵旋转[辅助数组时间复杂度O(n2),O(n2)]
        //核心:matrix_new[j][n-1-i] = matrix[i][j],n=matrix.length
        int n = matrix.length;
        if(n == 1){
            return;
        }
        int[][] matrix_new = new int[n][n];
        for(int i = 0 ; i < n ; i++){
            for(int j = 0 ; j < n ; j++){
                //旋转后数组复制到辅助数组中
                matrix_new[j][n-1-i] = matrix[i][j];
            }
        }
        //将辅助数组替换原数组
        for(int i = 0 ; i < n ; i++){
            for(int j = 0 ; j < n ; j++){
                matrix[i][j] = matrix_new[i][j];
            }
        }
    }
}

原地旋转解法
空间复杂度变为O(1),不要复杂数组

class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for (int i = 0; i < n / 2; ++i) {
            for (int j = 0; j < (n + 1) / 2; ++j) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n - j - 1][i];
                matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
                matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
                matrix[j][n - i - 1] = temp;
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小样x

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值