本文将为大家介绍AHP层次分析法究竟是什么,并以门店选址为例,展示了如何用AHP层次分析法实现的步骤。
一、什么是AHP层次分析法
AHP定义:AHP是对定性问题进行定量分析的一种多准则决策方法。
使用场景:为了解决某一问题,而该问题会受到多种因素的影响,通过系统性的给各因素赋予权重值,最后通过量化的方式决策出合理的方案。
二、AHP层次分析实现步骤
2.1 建立阶梯层次模型
按目标层、准则层、方案层进行划分:
- 目标层:即需解决的目标问题是什么? 例如本次的目标是:帮助企业开发选址人员选址合适的门店地址;
- 准则层:影响目标的因素是什么?例如:商圈类型、门店规模、客流数、租赁条件;将有关因素自上而下分层,上层受下层影响,同层因素相对独立。
- 方案层:备选方案是什么? 如:海淀区2号街、昌平区3号街、朝阳区4号街、丰台区5号街
2.2 构造判断矩阵
用成对比较法和1~9尺度构造判断矩阵,将准则层各因素两两比较按照专家建议的1~9尺度进行定量描述。
尺度表如下图所示,两两因素比较,给出合理的量化值:
2.3 计算单排序特征向量和一致性检验
这一步骤的目的就是计算准则层各因素的权重(特征向量)以及校验上一步骤打分的合理性,不合理则需重新进行打分。
首先我们要计算各因素的权重(特征向量):对矩阵A做归一化,算出特征向量W,如下图所示:
得到特征向量W即每个因素对目标重要程度所占比例,如下图所示:
最后我们要检查是否合理,计算一致性比率CR=CI/RI ,当CR<0.1 时,代表通过检验。
CI=(λ-n)/(n-1)
CI代表一致性指标,RI 代表随机一致性指标,λ代表特征值,n代表矩阵阶数。
这里n=4,所以CI=(λ-n)/(n-1)= 0.06838256622346665。
RI在业界有通用的值,这里RI=0.90,如下图所示:
CR=CI/RI = 0.07683434407131084 <0.1 一致性校验通过
2.4 计算总排序特征向量和一致性检验
计算最下层对最上层的特征向量以及校验方案合理性。
首先我们计算商圈类型对4个方案的特征向量值,构造商圈类型判断矩阵,如下图所示:
按照上述相同方法计算商圈类型特征向量,如下图所示:
同理计算出门店规模、客流数、租赁条件相对应的特征向量值,如下图所示:
计算海淀区2号街对总目标的权重值:最后得分为=0.314 ,如下图所示:
同理计算其它方案对总目标的权重值,如下图所示:
结论:由于昌平区3号街得分最高,所以我们选择该地址为最佳方案。
三、AHP层次分析总结
AHP特点是把复杂问题中的各个因素通过划分为相互联系的有序层次,使之条理化,把专家意见和分析者的客观判断结果直接有效结合起来,将一层次元素两两比较的重要性进行定量描述。而后,利用数学方法计算反映每一层次元素的相对重要性次序的权值,通过所有层次之间的总排序计算所有元素相对权重并进行排序。
- AHP优势:系统性的分析方法,具有条理性和简洁性,所需定量信息较少。
- AHP缺点: 不能为决策者提供新方案,只能从备选方案中选择较优者,定性成分多,不易令人信服,指标过多时,统计数据过大,且权重难以确定,特征值和特征向量的精准求法比较复杂。
本文由 @Gabriel 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。