层次分析法的缘由
层次分析法(AHP)是由美国运筹学家托马斯·塞蒂(T. L. Saaty)在20世纪70年代提出的。
当时,在进行复杂的社会、经济等系统决策问题时,需要综合考虑多种因素,这些因素往往相互关联、相互制约,很难用传统的数学模型去简单处理。塞蒂教授为了将复杂的决策问题层次化,把一个复杂问题分解成多个组成因素,并将这些因素按支配关系分组形成递阶层次结构,通过构建判断矩阵、计算权重向量等步骤,为决策者提供一种系统、实用的多准则决策方法,于是层次分析法应运而生。
层次分析法,就是把一个复杂的的问题拆解为多个层次,例如:目标层、准则层、方案层。然后通过对比因素重要性,确定权重,再综合评估得出最优方案。该方法将定量分析和定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用全数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
层次分析法的三大典型应用
(1)用于最佳方案的选取
(2)用于评价类问题
(3)用于指标体系的优选
运用层次分析法构造系统模型
(1)建立层次结构模型
(2)构造判断(成对比较)矩阵
(3)层次单排序及其一致性检验
(4)层次总排序及其一致性检验
层次分析法的具体流程
一、建立层次结构模型
将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最底层,绘出层次结构图。
最高层:决策的目标、要解决的问题。
最底层:决策时的备选方案。
中间层:考虑的因素、决策的准则。
对相邻的两层,称高层为目标层,低层为因素层。
例题如下:
获得大学毕业学位的毕业生,在“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。就毕业生来说选择单位的标准和要求是多方面的,例如:
①能发挥自己才干作出较好贡献(即工作岗位适合发挥自己的专长);
②工作收入较好(待遇好);
③生活环境好(大城市、气候等工作条件等);
④单位名声好(声誉等);
⑤工作环境