c++ builder groupbox修改样式_Pandas也能修改样式?快速给你的数据换个Style!

前言

在之前的很多文章中我们都说过,Pandasopenpyxl有一个很大的区别就是openpyxl可以进行丰富的样式调整,但其实在Pandas中每一个DataFrame都有一个Style属性,我们可以通过修改该属性来给数据添加一些基本的样式。

使用说明

我们可以编写样式函数,并使用CSS来控制不同的样式效果,通过修改Styler对象的属性,将样式传递给DataFrame,主要有两种传递方式

  • Styler.applymap:逐元素

  • Styler.apply:列/行/表方式

Styler.applymap通过DataFrame逐个元素地工作。Styler.apply根据axis参数,按列使用axis=0,按行使用axis=1,以及axis=None作用于整个表。所以若使用Styler.applymap,我们的函数应返回带有CSS属性-值对的单个字符串。若使用Styler.apply,我们的函数应返回具有相同形状的Series或DataFrame,其中每个值都是具有CSS属性值对的字符串。

不会CSS?没关系,作为调包侠的我们大多是改改HTML颜色代码即可完成样式修改,下面看一些示例。

一些例子

基本样式

首先我们创建一组没有任何样式的数据

27eba8cb965d9ab2cc94198966aac689.png

我们之前说过,DataFrame是有style属性的,所以在没有做任何修改的情况下,使用df.style应该和上图一样

3e6d07beb99138f3ec14b722194cb3be.png

现在让我们编写一个简单的样式函数,该函数可以将负数变为红色,使正数保持黑色。

def color_negative_red(val):

    color = 'red' if val 0 else 'black'
    return 'color: %s' % color

现在来应用这段函数(思考Excel如何实现)

ad2a6d97190f1abe14f88e7fc9740ffa.png

现在如果我们想突出显示每列中的最大值,需要重新定义一个函数

def highlight_max(s):

    is_max = s == s.max()
    return ['background-color: yellow' if v else '' for v in is_max]

因为之前我们是以元素为单位判断,所以使用的是.applymap,所以现在我们应对列进行.apply操作

b0f733ede4b8ad3814e6cb2eee429c13.png

现在可以使用

df.style.applymap(color_negative_red).apply(highlight_max)

来混合修改样式或使用.\实现

b9781e33b53aa6670e7945c3413a2517.png

当然我们也可以通过修改样式函数并使用.apply来高亮整个DataFrame的最大值,

7a3d7da9a1efcbf097ecd85adce180fa.png

切片

当然我们也可以使用subset通过切片来完成对指定列进行样式修改,比如高亮部分列的最大值

df.style.apply(highlight_max, subset=['B', 'C', 'D'])

6f913944acfa65d8ba9743e76fc3322a.png

对于行和列切片,可以使用我们熟悉的.loc,不过目前仅支持基于标签的切片,不支持位置切片。

格式化输出

我们也可以使用Styler.format来快速格式化输出,比如将小数格式化为百分数

2ffecb359a13e266a076fd4e76c4a29c.png

也支持使用字典或lambda表达式来更灵活的使用

4a4c4f54e6c97873de52967c9a64eafb.png

当然是支持和之前的样式结合使用

674f3e642b0088c5e1e875d42e15a5f2.png

内置样式

开发者们为了尽可能的让作为调包侠的我们使用起来更方便,已经内置了很多写好的样式,拿走就用,比如将空值设置为红色

9c6d933232c41c681decfc07d5d41e56.png

或是结合seaborn使用热力图

8144718e0108d42da5655d9ac406ee17.png

现在我们就可以通过修改Styler.background_gradient来轻松的修改颜色等样式

4865c27295e18cf456d435d016a77f1c.png

最后我们可以将数据修改为条形图的样式,这也是我最喜欢的一个功能,能够快速的看出数据的变化!

fba1037651ba4ebdde0c90961a0e0c42.png

在最新的版本中可以进一步自定义条形图:我们现在可以将df.style.bar以零或中点值为中心来快速观察数据变化,并可以传递颜色[color_negative, color_positive],比如使用align='mid'

f4649e55bc161870248d52c3ea463060.png

以上就是对Pandas中如何修改样式的一个简单介绍,更多的操作可以在官方文档https://pandas.pydata.org/pandas-docs/stable/user_guide/style.html中找到与学习。

往期文章

小案例: Pandas的apply方法Python语法快速入门Python网络爬虫与文本数据分析读完本文你就了解什么是文本分析综述:文本分析在市场营销研究中的应用从记者的Twitter关注看他们稿件的党派倾向?Pandas时间序列数据操作70G上市公司定期报告数据集文本数据清洗之正则表达式shreport库: 批量下载上海证券交易所上市公司年报Numpy和Pandas性能改善的方法和技巧漂亮~pandas可以无缝衔接BokehYelpDaset: 酒店管理类数据集10+G半个小时学会Markdown标记语法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值