数据分布_广州出租车GPS数据分布特征及应用

本文探讨了广州出租车GPS数据的时空分布特征及其在交通规划和运营管理中的应用。通过数据挖掘,作者识别了上下客流热点区域、出行OD分布,以及在广佛出租汽车返程点规划、夜班公交线路优化和如约巴士+出租汽车新模式中的应用。研究发现,出租车出行主要集中在城市干道、交通枢纽和医院附近,为交通规划提供了重要参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

出租汽车GPS数据记录了车辆的出行轨迹、时间、起讫点等信息,利用相关算法可以挖掘车辆或乘客的运行特征、时空分布特征等,对城市规划、交通管理等方面意义重大。作者以广州市为例,重点研究广佛出租汽车返程点布局规划、公共汽(电)车夜班线路优化,以及如约巴士+出租汽车新服务模式的应用尝试。

167231805dc837cba5f34b3570c5b8bb.png

苏跃江

广州市交通运输研究所

高级工程师

研究方法和数据基础

 1

研究方法

本文采用文献法和数据挖掘法两种研究方法。文献法主要查阅了出租汽车GPS数据挖掘的相关理论、研究进展以及实践应用,归纳和整理有用素材;数据挖掘法主要利用出租汽车GPS数据对车辆的运行特征、载客特征以及时空分布特征等进行挖掘。

 2

数据基础

出租汽车GPS数据主要包括车牌号、GPS时间、入库时间、经度、纬度、高度、速度、行驶方向、车辆运营状态以及数据有效性等共10项属性(见下表)。广州市约2万辆出租汽车基本都安装了GPS定位模块与计价器模块的车载终端,可动态采集出租汽车运行状态,通过无线通信装置以约每15~60s不等的时间间隔上传至后台控制中心存储,当日未运营车辆GPS数据待其开机后传输至控制中心。本次采集的数据包括广州市1个月和佛山市1星期的出租汽车GPS数据,平均每天约产生数据1亿条、20G容量。

出租汽车GPS数据表结构及示例

d5a2788f5ae42764acfec4e807632c84.png

 3

异常数据处理

出租汽车GPS数据在从终端传输到控制中心过程中可能存在一些误差和错误,需要进行预处理、过滤和剔除,从而提高原始数据的可靠性和精确性。一般主要包括三个方面:1)GPS终端设备故障导致数据出现接收时间延迟和错报;2)出租汽车进入隧道、地下停车场以及高层建筑密集区等,GPS终端发射信号时被遮挡导致数据传输或信号中断、信息无法上传;3)驾驶人在短时间内重复打表产生无效或异常数据。

主要算法

 1

地图匹配

地图匹配是一种常见的定位修正方法,基本思路是通过特定算法(本文采用最短距离算法),将GPS轨迹数据与实际数字地图进行匹配,实现车辆空间属性与GIS信息的对应,以确定车辆所处的路段与位置,保证车辆的运行轨迹或者位置真实地反映出来。首先,基于GIS道路网制作缓冲区,将出租汽车行驶轨迹数据匹配到缓冲区中,并剔除缓冲区外轨迹点(漂移点);其次,通过比较GPS目标点到与其相邻路段的距离及角度,将目标点投影到匹配度最高的弧段上,并依据校正后的GPS轨迹点分析车辆的运行特征、时空规律等(见下图)。

9cc29032a87cac53e7cc37c7e90a52b4.png

 出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值