
玩转 Python 数据分析
文章平均质量分 86
专栏亮点:
广泛的应用领域:我们将覆盖多个行业的数据分析案例,涵盖金融、电商、医疗、环保、交通、社交媒体等,让您了解不同领域的数据分析挑战和解决方案。
深入浅出的教程:专栏从入门到高级,循序渐进地讲解数据分析的基本概念和技巧,让初学者也能轻松上手,同时为有经验的读者提供深入的实战案例。
小刘要努力。
未来不担心,过去不后悔,现在不犹豫。
展开
-
74| 前程无忧python岗位信息爬取和分析
爬取2023年前程无忧网站上搜索关键字“python”,所得到的数据约1000多条(只有这么多),并对这些数据进行清洗,分析及可视化处理。包括不同学历要求下岗位数量分布,不同工作经验相对真实月薪,各地区相对真实月薪,各城市地区的岗位数量分布,福利待遇关键词,平均月薪,公司最喜欢招聘有多少年经验的人等7种分析。原创 2024-08-09 07:10:36 · 325 阅读 · 0 评论 -
73 | 基于Python的上海二手房数据爬取及分析
随着中国房地产市场的快速发展,二手房交易日益活跃,成为了城市居民购房的重要选项之一。上海作为中国经济的中心,其二手房市场尤为繁荣,吸引了众多购房者的关注。为了深入理解上海二手房市场的现状,分析房价走势、区域分布、房屋特征等因素,本项目选取链家网上海地区的二手房信息作为数据来源。链家网是中国领先的房地产在线平台,拥有丰富的房源信息,是进行此类分析的理想数据源。原创 2019-05-29 19:08:00 · 1356 阅读 · 1 评论 -
72 | 数据分析岗位招聘数据可视化
本项目旨在通过对智联招聘网站上发布的数据分析岗位信息的分析和可视化,帮助应届毕业生和希望进入数据分析行业的专业人士更好地理解当前的就业市场。通过收集包含职位名称、薪资范围、地点、工作经验、学历要求等关键信息的数据,项目深入探讨了数据分析岗位的多个维度。原创 2024-07-23 20:42:53 · 351 阅读 · 0 评论 -
70 | 双十一美妆数据分析可视化
双十一,作为全球最大的购物狂欢节,提供了丰富的数据资源,特别是在美妆产品类别中。美妆品牌在这一天提供各种优惠和折扣,吸引了大量消费者。本项目旨在分析和可视化双十一期间淘宝美妆品类的销售数据,帮助消费者洞察不同品牌的折扣策略,并评估各品牌产品的性价比。通过精心设计的图表,项目详细展示了各类数据分析结果,包括商品分类、商品数量分布、不同品牌的折扣率、打折套路以及商品折扣率。本项目使用的数据源为双十一期间的淘宝美妆销售数据,包括商品分类、品牌、价格、折扣率等信息。原创 2024-07-23 20:30:25 · 575 阅读 · 0 评论 -
71 | 去哪儿旅游数据分析
针对这样的痛点,我查找了2020年五一假期“去哪儿”旅游APP的数据,对2020年五一假期期间的景点数据进行分析处理,旨在为旅游出行的人们提供更好的旅游景点参考。数据分析结果价值宣言:利用一些数据分析工具、手段、方法或者思维,从海量和异构的数据中发现规律,得到相应的结论,使得我们能够更清晰的认知事物。数据类型:用直观的条形图、扇形图、组合条形图、热力图、水球图、漏斗图展示数据分析的结果。—> 用户可进行地区筛选(华东、华南、华北、华中、西南、西北、东北、港澳台地区)原创 2019-05-20 20:53:27 · 1321 阅读 · 1 评论 -
69 | 学生成绩因素分析
本报告所选数据集下载自kaggle。数据集包含美国 2,392 名高中生的全面信息,详细介绍了他们的人口信息、学习习惯、父母参与、课外活动和学业成绩。目标变量成绩等级将学生的成绩分为不同的类别。具体变量说明见表1-1所示。图2-1是以人种分类的GPA箱线图,可以看出,白种人(0)的成绩相对最低,而非裔美籍学生(1)和其他人种(3)的成绩相对更高 ,但各人种成绩分布基本相同,无显著差异。原创 2019-05-26 13:41:41 · 1177 阅读 · 0 评论 -
68 | 深圳链家二手房房源数据分析
本项目主要对链家二手房房源数据进行分析,通过数据可视化了解深圳的二手房源情况,对人们购房做出指导。原创 2019-05-25 20:37:27 · 1369 阅读 · 1 评论 -
67| 上海市互联网行业招聘数据集的构建与可视化分析
在对单个职位的数据进行清洗后,我将所有职位的数据整合成一个统一的数据集,方便进行综合分析。集经过清洗和处理,包含了各职位的职位名称、公司名称、公司类型及规模、学历要求、技能要。名称、公司名称、公司类型及规模、学历要求、技能要求、工作经验要求和薪资等信息。分析互联网行业的总体薪资和各职位的薪资分布可以帮助求职者了解不同职位的薪资水平。总之,本项目的研究为进一步探索和分析互联网行业的职位需求提供了有力支持,未来的研究。职位名称、公司名称、公司类型及规模、学历要求、技能要求、工作经验要求和薪资。原创 2024-07-21 14:50:11 · 497 阅读 · 0 评论 -
66 | RMF细分聚类案例
RFM模型基于三个关键指标,即最近购买时间(Recency)、购买频率(Frequency)和消费金额(Monetary),通过这些指标分析客户的购买行为,将客户划分为不同的价值层级。随着电子商务的迅速发展,企业面临着巨大的竞争压力,为了有效地满足不同客户群体的需求,提高市场份额,更深入地了解客户的消费行为变得至关重要。使用不同的符号(五角星、圆点、三角形)代表不同价值类别的用户,绘制了F值与M值的散点图,以展示客户的分布情况。统计了每个用户的总购买金额(消费金额),计算了M值,并绘制了M值的分布直方图。原创 2023-08-21 21:32:28 · 383 阅读 · 0 评论 -
65 | 增长模型案例
增长模型代表了一种综合性的方法论,旨在通过深入了解用户行为、市场趋势和数据洞察,来指导企业制定有效的增长战略。这种方法突破了传统的经验主义,将决策过程建立在数据驱动和实验的基础之上。增长模型不仅仅是一种理论,更是一种实际操作的框架,帮助企业在各个层面实现业务增长。原创 2023-08-21 21:09:07 · 344 阅读 · 0 评论 -
64 | A/B测试案例
A/B测试(又称为分割测试或对照测试)是一种实验性的方法,用于比较两个或多个变体(例如不同的网页设计、广告文案、功能等)在特定指标上的性能,从而确定哪个变体在某个目标上表现更好。通过随机将用户分配到不同变体的组中,收集数据并进行统计分析,你可以做出更准确的决策,以优化产品、服务或内容。为什么要使用A/B测试?A/B测试是基于实际数据和统计分析的方法,它可以帮助你避免主观判断和假设,从而做出更可靠的决策。通过A/B测试,你可以确定某个变化是否会显著影响用户行为,从而有效地改进产品或内容,提升业务指标。原创 2023-08-21 20:56:45 · 225 阅读 · 1 评论 -
63 | 留存分析案例
通过数据驱动的方法,我们可以识别影响留存率的因素,制定更精准的留存策略。随着信息时代的到来,企业面临着更多机会和挑战,通过科技手段收集和分析数据,深入了解客户行为和需求,成为了提升留存率的重要策略之一。然后,我们使用Kaplan-Meier生存分析方法绘制了整体的留存曲线,从中可以看出会员的留存率随着入会月数的增加逐渐下降,这提醒我们需要关注新会员的留存情况。例如,不同的会费支付方式和会员卡类型对留存率产生了不同的影响,这提示我们可以针对不同的客户群体制定不同的留存策略。原创 2023-08-21 20:28:22 · 291 阅读 · 0 评论 -
62 | 漏斗分析案例
首先,明确您想要分析的过程。比如,一个电子商务网站的漏斗可以包括浏览商品、加入购物车、结算等步骤。原创 2023-08-20 14:48:35 · 387 阅读 · 0 评论 -
61 | 归因渠道分析案例
将所有功劳归于最后一个引导客户转化的渠道。这种模型简单直接,但可能忽略了其他渠道的影响。原创 2023-08-19 12:12:01 · 431 阅读 · 0 评论 -
60 | 用户画像案例
用户画像是一种分析和描述目标受众特征的方法,可以帮助您更深入地了解您的受众群体,揭示他们的兴趣、需求和行为。首先,您需要收集有关用户的数据,这可以包括用户的基本信息(如年龄、性别、地理位置)、在线行为(如浏览历史、购买记录)、社交媒体活动等。使用数据分析工具(如Python、R、Excel等),对数据进行探索性分析。查看用户的特征分布,比如年龄分布、性别比例等。对每个用户群组进行更详细的分析,进一步了解他们的兴趣、需求和行为。例如,分析特定群组的购买偏好、浏览内容等。根据监测结果,优化和调整您的营销策略。原创 2023-08-19 12:04:28 · 386 阅读 · 0 评论 -
59 | RFM模型实战案例
RFM模型是一种用于客户分析和营销策略制定的工具,其名称来源于三个关键指标:最近一次购买(Recency)、购买频率(Frequency)和购买金额(Monetary)。RFM模型的核心思想是通过分析客户在这三个方面的行为,将客户划分为不同的分群,以便更好地了解客户的价值和行为特征,并制定针对性的营销计划。这个指标衡量了客户最近一次购买产品或服务的时间。一般来说,最近购买的客户可能更有可能继续购买,因此他们的价值相对较高。这个指标表示在一段时间内客户购买产品或服务的次数。原创 2023-08-19 11:43:15 · 418 阅读 · 0 评论 -
58 | 小红书产品体验报告
用户基数大且价值高2022 年小红书最新数据显示,目前小红书有超 2 亿月活用户, 用户基数非常大。其中 72%为 90 后,50%分布在一二线城市。用户可分为六大人群标签:Z 世代、新锐白领、都市潮人、单身贵族、精致妈妈 和享乐一族。可以看出,这类用户普遍生活质量偏高且具有较高的消费潜能。这为小红薯平台提供了巨大 的获利的“客源”。为消费者提供决策用户通过浏览笔记来种草、拔草想要的或者相关的商品,通过笔记更好的了解商品是否是真的满足自己的 期望要求和需要,来为自己的消费更好的决策。原创 2023-08-19 09:27:46 · 591 阅读 · 0 评论 -
57 | TAPTAP客户端分析
前面已经说过,游戏爱好者更倾向于玩“好玩”的游戏,在TapTap游戏库中选择游戏时,每款游戏的标签和评分也会显示,玩家除了自己主观判断外,可以根据标签和评分来选择是否点击这款游戏,这点是非常好的。发帖是用户之间交流的重要方式,但taptap客户端发帖却仅仅只限于文字和图片,我认为在传播信息方面,文字是不如图片的,图片是不如视频的,特别是对于游戏这种交互性极强的产品,视频其实很大程度上比图片文字传达信息效果好。进入论坛后,taptap采用了点聚式的交互方式,无论你在浏览何处的帖子,你都可以直接点击然后发帖。原创 2023-08-19 08:53:36 · 548 阅读 · 0 评论 -
56 | 国内游戏直播竞品分析
综上所述, 斗鱼最为全面但更注重于社交类,不仅有丰富的弹幕互动形式, 更建立了鱼吧, 用户可以畅所欲言, 不仅主播可以创造平台内容, 观众也可以发 挥自己的想象力去引进流量。熊猫则注重娱乐(星秀直播和自创节目), 引进一系列的明星,吸引粉丝跟 进潮流。同时自创一系列节目, 培养平台的粉丝而不是主播的粉丝。(与斗鱼不 同,不能自发的创造内容而引进流量)。因此,如果一个用户需求在于社交,那么斗鱼将是很好的选择;如果用户对 社交不太敏感,只关注于娱乐,那么熊猫直播对于他而言则更加适合。原创 2023-08-19 08:46:17 · 701 阅读 · 0 评论 -
55 | 商品数据化运营
商品是指狭义上的实物商品,不包含有偿服务、虚拟商品等。商品和产品在很多场合下可以互用,但在互联网领域,产品也可用来表示与用户交互的载体,例如app、网站等。但这类产品的概念非以下所讨论的商品范畴之内。原创 2023-08-18 18:37:36 · 236 阅读 · 0 评论 -
54 | 会员数据化运营概述
RFM模型是根据会员最近一次购买时间R(Recency),购买频率F(Frequency),购买金额M(Monetary)计算得出RFM得分,通过这3个维度来评估客户的订单活跃价值,常。针对营销活动展开的,通常在做会员营销活动之前,通过营销响应预测模型分析,找到可能响应活动的会员特征及整体响应的用户比例、数量和可能带来的销售额。在该模型中,不要求用户发生交易,因此可做未发生登陆、注册等匿名用户的行为价值分析,也可以做实名用户分析。用于评估用户的价值情况,是区分会员价值的重要模型和参考依据,也是。原创 2023-08-18 18:36:48 · 340 阅读 · 0 评论 -
53 | 金融行业股票销售指标分析
通过深入分析交易量、成交金额、涨跌幅等关键指标,投资者可以更好地了解市场趋势、投资者情绪以及投资风险,从而做出更明智的投资决策。同时,合理运用数据分析工具和技术,能够提高分析的效率和准确性,为金融行业的投资者和相关机构提供更全面的市场洞察。通过深入分析关键的销售指标,投资者、金融机构和交易平台可以更好地了解市场趋势,作出明智的投资决策,优化交易策略。考察市场中的重要事件,如公司公告、政策变化等,看它们是否与涨跌幅和交易活跃度的波动相关。考察市场中的重要事件,如宏观经济因素、公司业绩等,分析其对指标的影响。原创 2023-08-17 12:42:20 · 729 阅读 · 0 评论 -
52 | 电商行业销售指标分析
通过这样的分析案例,电商公司可以获得更深入的洞察,制定更明智的决策,以提升业务绩效和竞争力。请注意,具体案例可能因公司规模、市场情况和数据可用性而有所不同。电商公司A是一家在线零售商,销售各种商品,包括服装、家居用品和电子产品。该公司在过去一年内进行了一系列营销活动和扩展计划。通过对电商公司A的综合业绩进行分析,了解其销售趋势、市场份额、客户满意度和盈利能力。原创 2023-08-17 12:34:01 · 346 阅读 · 0 评论 -
51 | 用户增长指标
用户增长相关指标是产品运营和市场营销领域中的关键衡量标准,用于评估用户活跃度、参与度以及产品的成功程度。这些指标能够揭示用户的行为模式、市场需求以及潜在增长机会。在本文中,我们将深入探讨一系列与用户增长相关的指标,以便更好地理解它们的含义和作用。原创 2023-08-17 11:55:08 · 513 阅读 · 0 评论 -
50 | 国产商业漫画分析
总结一下,在报告开头我们提出了几个问题。以下是从数据分析中得到的一些结论:与以少年漫画为主力的日漫不同,当前国漫市场更偏女性向,恋爱、耽美向的作品更多,都市、总裁类题材的少女漫也屡见不鲜,古风、玄幻等我国特有的题材类型也很受欢迎。不过近年国漫也在往越来越多元化的方向发展,开始出现更多搞笑、热血向的漫画。比起早年漫画工作室撑起国漫半边天的景象,近两年越来越多的个人创作者开始投入商业化漫画的市场。由于数据来源的问题,本分析报告的结论总不免有失偏颇,毕竟各家漫画平台在定位上各有不同。本分析仅仅作为参考。原创 2023-08-14 17:46:11 · 369 阅读 · 0 评论 -
49 | 公司销售数据分析
本数据是2012~2014年间一家生产体育类产品的全球销售订单数据,分别按时间、产品类别、销售国家统计产品销售情况,分析销售额和利润额统计各产品市场占有份额,为下一步生产计划提供有价值的建议。在全球的销售额中,美国的销售额是最高的,高达650811000美元,占到了总销售额大部分,说明了美国是主要的服务国家。其次,日本,中国,加拿大,英国销售额也是很重要的一部分。绘制了不同的销售方式销售总额,其中户外商店的占了绝大部分,户外商品 店、运动品店和高尔夫用品店的销售额为前三甲。原创 2023-08-14 17:12:49 · 238 阅读 · 0 评论 -
48 | 电子产品销售分析
Unnamed: 行号event_time:下单时间order_id:订单编号product_id:产品标号category_id :类别编号category_code :类别brand :品牌price :价格user_id :用户编号age :年龄sex :性别local:省份。原创 2023-08-14 17:06:11 · 528 阅读 · 0 评论 -
47 | 全球听众最多的50首歌曲
该数据集包括23486行和10个特征变量。每行对应一个客户评论,并包含以下变量:Track.name:曲目的名称艺术家姓名:艺术家姓名曲目类型每分钟的节奏能量:一首歌的能量-值越高,能量越大。歌曲舞蹈性:舞蹈性越高,就越容易跟着这首歌跳舞。响度:dB值越高,歌曲越响。活性:活性值越高,歌曲越有可能是现场录制的。价格:价值越高,歌曲的积极情绪就越强。长度:歌曲的持续时间。音质:值越高,歌曲的音质越好。言语:价值越高,歌曲包含的口语词越多。流行:歌曲价值越高越受欢迎。中文名称。原创 2020-02-24 15:24:08 · 11228 阅读 · 14 评论 -
46 | 研究生入学率预测
该数据集的灵感来自UCLA研究生数据集。考试成绩和GPA采用较旧的格式。该数据集归Mohan S Acharya所有。数据集从印度的角度预测研究生入学率,包含几个在申请硕士课程期间被认为重要的参数。中文名称英文名称序列号Serial No.GRE成绩GRE Score托福成绩大学等级标准操作程序SOP劳尔LORCGPACGPA研究Research录取机会在数据集中是数据分析的文件(简记sklearn),是用python实现的机器学习算法库。sklearn。原创 2020-02-22 10:26:09 · 4551 阅读 · 8 评论 -
45 | 女士电子商务服装数据分析
该数据集包括23486行和10个特征变量。**服装ID:**整数分类变量,指的是要查看的特定作品。**年龄:**评论者年龄的正整数变量。**标题:**评论标题的字符串变量。评论文本:评论正文的字符串变量。**评分:**客户授予的产品评分的正序整数变量,从1最差,到5最佳。**推荐的IND:**二进制变量,说明客户在推荐1的地方推荐产品,不推荐0的地方。**积极的反馈计数:**积极的整数,记录发现该评论为积极的其他客户的数量。**高级部门名称:**产品高级部门的分类名称。原创 2020-02-23 16:14:51 · 3536 阅读 · 0 评论 -
44 | 酒店预订及取消的数据分析
数据集来自Kaggle网站上公开的Hotel booking demand项目该数据集包含了一家城市酒店和一家度假酒店的预订信息,包括预订时间、入住时间、成人、儿童或婴儿数量、可用停车位数量等信息。数据集容量约为12万×32总览数据,完成对数据的数据预处理利用数据集对酒店运营状况/市场情况/客户画像进行数据分析根据数据集建立预测模型,预测客户是否会取消预订。原创 2023-08-14 16:35:35 · 1019 阅读 · 0 评论 -
43 | 抖音大V人民日报粉丝数分析
抖音是一个面向全年龄的音乐短视频社区平台,如今已成为最火的短视频软件,无数短视频创作者通过抖音分享生活,分享技能,分享美好。我们试图通过分析抖音大 V:“人民日报”的 2021 年 3 月份的数据,通过多元线性回归得出相关关系。此外还得知在 3 月 1 日,其粉丝数量为 122747343 个。作出粉丝增长量以及粉丝总量折线图。使用多元线性回归,求出最佳拟合线的截距 d 以及回归系数(α,β ,γ)原创 2023-08-14 16:24:12 · 665 阅读 · 0 评论 -
42 | 航空公司客户价值分析
4.第四簇人群,12035人,最大的特点是时间间隔差值最大,分析可能是“季节型客户”,一年中在某个时间段需要多次乘坐飞机进行旅行,其他的时间则出行的不多,这类客户我们需要在保持的前提下,进行一定的发展;1.第一簇人群,4654人,最大的特点就是平均折扣率都是最高的,应该是属于乘坐高等舱的商务人员,应该重点保持的对象,也是需要重点发展的对象,另外应该积极采取相关的优惠政策是他们的乘坐次数增加。本项目的目标是客户价值分析,即通过航空公司客户数据识别不同价值的客户,识别客户价值应用最广泛的。原创 2023-08-13 22:48:21 · 404 阅读 · 0 评论 -
41 | 京东商家书籍评论数据分析
我们将从数据的收集、预处理,到情感分析和关键词提取,逐步展示如何利用现代数据分析方法,从大规模的文本数据中提取有价值的信息。京东作为中国领先的电子商务平台,积累了大量商品评论数据,这些数据蕴含了丰富的信息。通过文本数据分析,我们可以了解用户对产品的态度、评价的关键词、消费者的需求等,从而有助于商家优化产品和服务,以及消费者作出更明智的购买决策。业务流程:数据准备-》数据清洗-》总体评价状况分析-》差评商品分析-》利用词云图分析负面评价。原创 2023-08-13 12:23:36 · 1167 阅读 · 0 评论 -
40 | NBA球员信息数据分析
本文将以NBA球员薪资数据并进行数据分析为例,展示如何获取网络上的数据资源,并通过数据处理和可视化方法揭示有关NBA球员薪资的信息。我们将使用提供的URL(www.espn.com/nba/salaries)来抓取NBA球员薪资数据,然后运用数据分析工具,对数据进行清洗、整理和计算,最终通过条形图的形式呈现薪资水平的分布和差异。原创 2023-08-13 12:17:33 · 781 阅读 · 0 评论 -
39 | 西安历史天气并分析
在本文中,我们将展示如何通过网络抓取获取西安市2022年的天气数据,然后使用数据处理工具对其进行清洗和预处理。接着,我们将利用数据可视化技术,如折线图、柱状图等,将复杂的数据转化为直观的图表,以便更好地理解不同月份的温度变化、降雨分布等。通过这些步骤,我们能够更加全面地认识2022年西安的气象情况,为未来的气象观测和研究提供参考依据。原创 2023-08-13 12:11:24 · 323 阅读 · 0 评论 -
38 | 浦发银行股票分析案例
本文将通过一个浦发银行股票分析案例,探讨如何从多个维度对股票进行分析,包括基本面、技术面和市场环境等因素。我们将深入挖掘浦发银行的财务数据、业务模式以及市场定位,以了解其内在价值和潜在风险。同时,我们还将考察技术面的指标,如价格走势、均线形态等,以揭示市场情绪和趋势。原创 2023-08-13 12:05:39 · 622 阅读 · 0 评论 -
37 | 电影数据分析案例
本数据分析实例将以一份包含丰富电影信息的数据集为基础,探索电影产业中的一些关键问题。我们将研究不同电影类型随着时间的推移发生的变化,探讨哪些类型的电影在不同时期受到更多的关注。我们将分析不同类型电影的数量分布,以及各类型电影在整个电影库中的占比情况。我们将研究不同类型电影的利润情况,以及一些知名电影公司在电影数量和利润方面的表现。通过分析电影的关键词信息,我们将对比原创电影和改编电影的数量、票房和评分情况。我们将探讨电影时长与票房收入、观众评分之间是否存在关联。原创 2023-08-13 11:54:29 · 341 阅读 · 0 评论 -
36 | 银行贷款数据分析
(4)在押品价值的分布上:存款和非存款客户的押品价值都集中在0值附近,进一步对押品价值分箱处理后发现,存款和非存款客户中绝大多数都没有住房抵押(押品价值为0),而有住房抵押的存款客户其押品价值在6万到17.5万美元间的最多,有住房抵押的非存款客户其押品价值在10万美元左右的最多(其核密度曲线在10万美元处有一极值),,同时随着押品价值的升高存款和非存款客户的数量都越来越少。(1)在年龄的分布上:存款客户的年龄集中在33到55岁之间,其中年龄在33-45之间的客户远高于其他存款客户,可见存款客户以青年为主。原创 2023-08-13 11:17:44 · 1375 阅读 · 0 评论 -
35 | 厦门招聘数据分析
在这个数据分析实例中,我们将运用数据科学的方法,使用Python编程语言和相关库进行数据处理、分析和可视化。通过对大量的招聘数据进行挖掘,我们将揭示厦门市招聘市场的动态,探索不同行业的就业趋势,以及人才的薪资待遇等关键信息。通过这一深入的分析,我们可以为求职者提供就业市场的实际情况,为企业提供人才招聘的指导,同时也为决策者提供更准确的市场洞察力。原创 2021-03-01 20:55:58 · 2723 阅读 · 2 评论