术语:
figure 画板 axes/subplot 画纸
axis 、y label 、 x label 坐标轴
legend 图例 grid 网格 tick 刻度
makers 点 line 线
title 标题
散点图scatter 柱形图bar 折线图plot
-------------------------------------------------------
#点: 数值类型 散点图 scatter plot
#线: 时间序列 折线图 plot
#柱: 分类数据 柱状图 bar plot
#颜色: 第三维度 热力图 heatmap
一.matplotlib
创建画板plt.figure(figsize=())
创建画布 plt.subplot(2,2,1)#行、列、位置
选择画布作画:plt创建时,画笔就停留在该画布上了
# plt.subplots:创建一个带有多个subplot的figure是很常见的操作
创建一个新的figure,并返回一个numpy数组,其中包含创建的subplot对象
#柱状图、散点图:(画布调用方法)axes.scatter(date) or axes.scatter(data.c1,date.c2)
density=1 参数 alpha=0.x 参数
#折线图(画笔调用方法)plt.plot(x,y) plt.plot(data)
#属性 颜色,点,线 color marker linestyle
#轴显示范围 标签 标题 网格
画布调用方法axes.set_?(),画笔调用方法plt.?() ?代表目标
plt.axis([a,b,c,d]) 坐标轴显示范围
plt.grid(bool)
plt.title()
plt.xlabel() plt.ylabel() plt.xlim(list) plt.ylim(list)
plt.xticks(list) plt.xticklabel(list)
#图例:
plt.lengend(loc=best)
plt.legend(bbox_to_anchor=(1,1),loc=2)
给图例命名:
#注释plt.annotate() axes.set_annotate()
xy 箭头位置 xytext注释位置
#多图同画布:
二.pandas内置绘图
①:折线图:dataframe.plot(x=,y=,参数?) (适合于时间序列)
参数可以是figesizie color maker......
②:直方图: dataframe.plot.hist(bins=?) (适合于分类数据 分桶)
③:条形图: bar(适合对比,非时间序列)#plot.bar(stacked=True)
bar()和plot.barh()分别绘制 垂直 和 水平 的条形图。
④:饼图:dataframe.plot.pie()
⑤:散点图:dataframe.plot.scatter(x=,y=,参数?)
还有另一种形式:dataframe.plot(kind="scatter"),仔细对比形式,可以知道折线图为什么是plot()形式了
⑥:箱线图 dataframe.plot.box() or
dataframe.boxplot(columns="",)
加入by=""参数,可以分为画出箱线图
⑦面积图:plot.area()
综合应用:
重叠图plot()中添加参数ax=?
标签不太符合规范(旋转角度校正)