matplotlib库使用教程:这一篇就够了

一、导入库

import matplotlib.pyplot as plt

二、显示图片

plt.imshow(imge,      # 负责对图像进行处理  imge类型:<class 'numpy.ndarray'>
           cmap=plt.cm.gray_r,       # cmap参数: 为调整显示颜色  gray为黑白色,加_r取反为白黑色
           interpolation='nearest')
plt.show()  # 显示图片在 pycharm中 使用

cmap颜色大全:点击查看

三、将图片转换成矩阵

array = imge.astype(int)  # 将imge转换成数字矩阵

四、常用函数

plt.subplot(2,2,1,frameon=False) # 绘制子图,两行一列,位置是1的子图
plt.axis("off")  # 关闭坐标轴  
plt.title("图片标题")  #设置显示图片标题

五、各种显示

1、使用点显示

from sklearn import datasets
X,Y = datasets.make_regression(n_samples=100,n_features=1,n_targets=1,noise=1)
#noise越大越离散
plt.scatter(X,Y)   # X为一维或二维,Y为一维
plt.show()

六、坐标图形显示

一、点线图

x1 = [3,4,5,6] # [列表]
y1 = [2,3,2,3.2] # x,y元素个数N应相同
x2 = [2,4,5,6] # [列表]
y2 = [1,2,1,1.2] # x,y元素个数N应相同
plt.plot(x1,y1,'o-',color='r',label='line1')    # 'o-' 表示散点且连线
plt.plot(x2,y2,'o-',color='g',label='line2')
plt.xlabel("x axis")   # 显示x轴名
plt.ylabel("y axis")   # 显示y轴名
plt.legend(loc='best')  # 显示小方格标题
plt.show()

*效果显示

在这里插入图片描述

一、散点图

X = [1,6,3,7,9,4,3,4,1,6,8]
Y = [5,6,3,1,9,7,5,6,2,3,4]
plt.scatter(X,Y)
plt.show()

*效果显示
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云霄IT

感谢感谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值