ggplot2包是由Hadley Wickham在2005年创造。相对于R中的基础可视化包,是基于图形语法的绘图包,一经提出就迅速受到广大R语言使用者的喜爱。ggplot2包利用图层叠加的绘图方式,往图像上不断的添加图形元素、注释、统计结果等内容。
plotnine库可以看作是在Python中对ggplot2包的一种实现,方便Python对数据可视化的应用。
本文章会分别介绍在R和Python中,如何使用相关的库进行数据可视化分析。对比分析两个库的使用情况。
1. ggplot2与plotnine数据可视化初探
在R语言中的ggplot2包数据可视化流程程序如下:
## 统一设置ggplot2默认的绘图风格
library(ggplot2)
theme_set(theme_bw(base_family = "STKaiti"))
library(ggplot2)## 导入包
data("mpg") ## 加载ggplot2包中自带的数据集
## ggplot2数据可视化流程
## 初始化绘图图层,并指定绘图的数据和坐标系X,Y轴使用的变量
p1
## 添加绘图使用的主题和相关设置图层
theme_minimal(base_family = "STKaiti",base_size = 12)+
## 添加绘制图像的类型图层,并指定是否根据不同的种类以不同样式显示
geom_point(aes(colour = drv,shape = drv),size = 2)+
## 添加新的平滑曲线图层,使用广义回归模型拟合
geom_smooth(aes(colour = drv),method = "glm")+
## 设置图像的标题和坐标轴的标签
labs(x = "发动机排量",y = "油耗",title = "mpg数据集")+
## 添加主题图层对图像进一步调整
theme(plot.title = element_text(hjust = 0.5), # 调整标题位置
legend.position = c(0.9,0.8), # 调整图例位置
legend.title = element_text(size=10))+ #调整图例字体大小
## 对坐标轴的内容进行调整
scale_x_continuous(labels = function(x) paste(x,"升",sep = ""))+
## 对图例中的颜色映射和名称进行调整
scale_color_brewer("驱动方式",palette = "Set1")+
scale_shape_discrete("驱动方式")
## 输出图像p1
p1
运行程序后可获得如下所示的可视化图像:图1 R语言ggplot2数据可视化图像1
针对上面的图像,在Python中可使用下面的程序进行数据可视化:
## 显示高清图
%config InlineBackend.figure_format = 'retina'
## 导入相关库和模块
import pandas as pd
import numpy as np
from plotnine import *
from plotnine.data import mpg
import matplotlib.pyplot as plt
from matplotlib import gridspec