java怎么做沙子合并_PASCAL沙子合并怎么做

展开全部

DP模型

环状数据模型的动态程序设计的分析

引言:在动态程序设计中,有一类问题的数据是环状的,如e68a843231313335323631343130323136353331333264653432何来处理环,为阶段的划分提供依据,是解决此类问题的关键;一般的来说,处理方法都有两类一类是利用模运算直接对环处理, 还有一类是将线性表展开成为原来的2倍,下面将分别说明。

【石子合并】(1)

在一个圆形操场的四周摆放着n 堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。

试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。

【输入文件】

包含两行,第1 行是正整数n(1<=n<=100),表示有n堆石子。

第2行有n个数,分别表示每堆石子的个数。

【输出文件】

输出两行。

第1 行中的数是最小得分;第2 行中的数是最大得分。

【输入样例】

3

1 2 3

【输出样例】

9

11

【分析】

本题初看以为可以使用贪心法解决问题,但是事实上因为有必须相邻两堆才能合并这个条件在,用贪心法就无法保证每次都能取到所有堆中石子数最多的两堆。例如下面这个例子:

6

3 4 6 5 4 2

如果使用贪心法求最小得分,应该是如下的合并步骤:

第一次合并 3 4 6 5 4 2 2,3合并得分是5

第二次合并 5 4 6 5 4 5,4合并得分是9

第三次合并 9 6 5 4 5,4合并得分是9

第四次合并 9 6 9 9,6合并得分是15

第五次合并 15 9 15,9合并得分是24

总得分=5+9+9+15+24=62

但是如果采用如下合并方法,却可以得到比上面得分更少的方法:

第一次合并 3 4 6 5 4 2 3,4合并得分是7

第二次合并 7 6 5 4 2 7,6合并得分是13

第三次合并 13 5 4 2 4,2合并得分是6

第四次合并 13 5 6 5,6合并得分是11

第五次合并 13 11 13,11合并得分是24

总得分=7+13+6+11+24=61

由此我们知道本题是不可以使用贪心法求解的,上例中第五次合并石子数分别为13和11的相邻两堆。 这两堆石头分别由最初 的第1,2,3堆(石头数分别为3,4,6)和第4,5,6堆(石头数分别为5,4,2)经4次合并后形成的。于是问题又归结为如何使得这两个子序列的N-2次合并的得分总和最优。为了实现这一目标,我们将第1个序列又一分为二:第1、2堆构成子序列1,第3堆为子序列2。第一次合并子序列1中的两堆,得分7;第二次再将之与子序列2的一堆合并,得分13。显然对于第1个子序列来说,这样的合并方案是最优的。同样,我们将第2个子序列也一分为二;第4堆为子序列1,第5,6堆构成子序列2。第三次合并子序列2中的2堆,得分6;第四次再将之与子序列1中的一堆合并,得分13。显然对于第二个子序列来说,这样的合并方案也是最优的。由此得出一个结论──6堆石子经过这样的5次合并后,得分的总和最小。

动态规划思路:

阶段i:石子的每一次合并过程,先两两合并,再三三合并,...最后N堆合并

状态s:每一阶段中各个不同合并方法的石子合并总得分。

决策:把当前阶段的合并方法细分成前一阶段已计算出的方法,选择其中的最优方案

采用动态规划求解的关键是确定所有石子堆子序列的最佳合并方案。 这些石子堆子序

列包括:

{第1堆、第2堆}、{第2堆、第3堆}、……、{第N堆、第1堆};

{第1堆、第2堆、第3堆}、{第2堆、第3堆、第4堆}、……、{第N堆、第1堆、第2堆};

……

{第1堆、……、第N堆}{第2堆、……、第N堆、第1堆}……{第N堆、第1堆、……、第N-1堆}

为了便于运算,我们用〔i,j〕表示一个从第i堆数起,顺时针数j堆时的子序列

{第i堆、第i+1堆、……、第(i+j-1)mod n堆}

具体来说我们应该定义一个数组s[i,j]用来表示合并方法,i表示从编号为i的石头开始合并,j表示从i开始数j堆进行合并,s[i,j]为合并的最优得分。

对于上面的例子来说,初始阶段就是s[1,1],s[2,1],s[3,1],s[4,1],s[5,1],s[6,1],因为一开始还没有合并,所以这些值应该全部为0。

第二阶段:两两合并过程如下,其中sum(i,j)表示从i开始数j个数的和

s[1,2]=s[1,1]+s[2,1]+sum(1,2)

s[2,2]=s[2,1]+s[3,1]+sum(2,2)

s[3,2]=s[3,1]+s[4,1]+sum(3,2)

s[4,2]=s[4,1]+s[5,1]+sum(4,2)

s[5,2]=s[5,1]+s[6,1]+sum(5,2)

s[6,2]=s[6,1]+s[1,1]+sum(6,2)

第三阶段:三三合并可以拆成两两合并,拆分方法有两种,前两个为一组或后两个为一组

s[1,3]=s[1,2]+s[3,1]+sum(1,3)或s[1,3]=s[1,1]+s[2,2]+sum(1,3),取其最优

s[2,3]=s[2,2]+s[4,1]+sum(2,3)或s[1,3]=s[2,1]+s[3,2]+sum(2,3),取其最优

第四阶段:四四合并的拆分方法用三种,同理求出三种分法的得分,取其最优即可。以后第五阶段、第六阶段依次类推,最后在第六阶段中找出最优答案即可。

由此得到算法框架如下:

For j←2 to n do {枚举阶段,从两两合并开始计算}

For i←1 to n do {计算当前阶段的n种不同状态的值}

For k←1 to j-1 do {枚举不同的分段方法}

begin

If i+k>n then t←(i+k) mod n else t←i+k {最后一个连第一个的情况处理}

s[i,j]←最优{s[i,k]+s[t,j-k]+sum[1,3]} {sum[i,j]表示从i开始数j个数的和}

end;

【参考程序】:

var

n:integer;

a:array[1..100] of longint;

s:array[1..100,1..100] of longint;

t:array[0..100,0..100] of longint;

i,j,k,temp,max,min:longint;

begin

assign(input,'shizi.in');

reset(input);

readln(n);

fillchar(t,sizeof(t),0); {计算和数组}

for i:=1 to n do

read(a[i]);

for i:=1 to n do

for j:=1 to n do

for k:=i to i+j-1 do

begin

if k>n then temp:=k mod n else temp:=k;

t[i,j]:=t[i,j]+a[temp];

end;

{动态规划求最大得分}

fillchar(s,sizeof(s),0);

for j:=2 to n do

for i:=1 to n do

for k:=1 to j-1 do

begin

if i+k>n then temp:=(i+k) mod n else temp:=i+k; {处理环形问题}

max:=s[i,k]+s[i+k,j-k]+t[i,j];

if s[i,j]

end;

max:=0; {在最后的阶段状态中找最大得分}

for i:=1 to n do

if max

{动态规划求最小得分}

fillchar(s,sizeof(s),0);

for j:=2 to n do

for i:=1 to n do

begin

min:=maxlongint;

for k:=1 to j-1 do

begin

if i+k>n then temp:=(i+k) mod n else temp:=i+k; {处理环形问题}

s[i,j]:=s[i,k]+s[temp,j-k]+t[i,j];

if min>s[i,j] then min:=s[i,j];

end;

s[i,j]:=min;

end;

min:=maxlongint; {在最后的阶段状态中找最小得分}

for i:=1 to n do

if min>s[i,j] then min:=s[i,j];

writeln(max);

writeln(min);

end.

本回答由网友推荐

2Q==

已赞过

已踩过<

你对这个回答的评价是?

评论

收起

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值