个人声明
本系列文章记录本人自学线性代数教材《Linear Algebra Done Right》的概念梳理(复习)和部分习题解答(练习)。如有任何错误或不严谨之处恳请读者在评论区留言提醒。
本书信息
书名:Linear Algebra Done Right (3rd Edition)
语言:英文
作者:Sheldon Axler
ISSN: 0172--6056(纸质);2197-5604(电子)
ISBN: 978-3-319-11079-0(纸质);978-3-319-11080-6(电子)
出版社:Springer
出版年份:2015
参考链接
电子PDF链接(英文):Linear Algebra Done Right
习题答案链接(英文):Solution Manual
本书目录(译)
注:点击链接跳转至对应的章节内容,加粗字体表示本文所在的章节内容。
(链接更新中)
一、向量空间——
与
;向量空间的定义;子空间
二、有限维向量空间——生成空间与线性无关;基;维数
三、线性映射——线性映射的向量空间;零空间与值域;矩阵;可逆性与同构向量空间;向量空间的积与商;对偶性
四、多项式
五、特征值、特征向量与不变子空间——不变子空间;特征向量与上三角矩阵;特征空间与对角矩阵
六、内积空间——内积与范数;标准正交基;正交补与最小化问题
七、内积空间上的算子——自伴算子与正规算子;谱定理;正定算子与等距同构;极分解与奇异值分解
八、复向量空间上的算子——广义特征向量与幂零算子;算子的分解;特征多项式与最小多项式;Jordan型
九、实向量空间上的算子——复化;实内积空间上的算子
十、迹与行列式——迹;行列式
笔记附录
附录一、一些基础离散数学与抽象代数概念笔记
附录二、附录一中的定理证明
注:本附录整理一些基础离散数学与抽象代数的概念以便于本书线性代数的学习。
笛卡尔积
两个集合
的
笛卡尔积
被定义为每个集合
中的元素与每个集合
中的元素组成的所有有序数对
的集合。准确地说,
。
例如
(1) 若
且
,则
;
(2) 若
,则
。
(3) 若
或
,则
。
注意笛卡尔积不满足交换律和结合律,因为
(1)
。
(2)
。
关于笛卡尔积的定理
定理1
(1)
当且仅当
或
或
;
(2)
;
(3)
;
(4)
;
(5)
;
(6) 若
,则
;
(7) 若
,则
当且仅当
且
;
(8)
。
证明见附录二
有限多个集合
的笛卡尔积
被定义为
。
类似地,可数无穷个集合的笛卡尔积被定义为
。
若
,则笛卡尔积
可记为
,称作
笛卡尔幂。
类似地,若
,则笛卡尔积
可记为
。
例如
(1) 若
,则
;
(2) 若
,则
。
二元关系
从集合
至集合
上的
二元关系
被定义为两集合的笛卡尔积
的子集。准确地说,
。若
,则记为
或
,其中
被称作元素
的
相关集。集合
称作
离开集。
称作
到达集或
陪域。满足存在一个
使得
的所有的
的集合被称作
定义域或
原像,记为
。满足存在一个
使得
的所有的
的集合被称作
值域或
像,记为
。定义域和值域的并
称作二元关系
的
域。
唯一性
(1) 左唯一,也称作单射:对于所有的
与
,
且
仅当
。此时
称作关系
的
主键。例如
关于
的方程
与
。
(2) 右唯一:对于所有的
与
,
且
仅当
。此时
称作关系
的
主键。例如
关于
的方程
与
。
(3) 一对一:满足左唯一与右唯一。例如
关于
的方程
。
(4) 一对多:满足左唯一但不满足右唯一。例如
关于
的方程
。
(5) 多对一: 满足右唯一但不满足左唯一。例如
关于
的方程
。
(6) 多对多: 不满足左唯一与右唯一。例如
关于
的方程
。
完全性
(1) 左完全,也称作处处有定义:对于所有的
,存在
使得
。换句话说,定义域等于离开集
。例如
关于
的方程
与
。
(2) 右完全,也称作满射:对于所有的
,存在
使得
。换句话说,值域等于陪域
。例如
关于
的方程
与
。
(3) 函数,也称作映射:右唯一且左完全的二元关系。换句话说,对于所有的
,存在唯一的
使得
。此时可把函数记为
与
。例如
关于
的方程
与
与
。
(4) 双射,也称作一一对应:单射且满射的函数。换句话说,具有左唯一、右唯一、左完全和右完全的二元关系。例如
关于
的方程
。
关系上的运算
(1) 关系的交:
。
(2) 关系的并:
。
(3) 关系的补:
。
(4) 关系的逆:
。
(5) 关系的复合:设
与
,则
。
特殊的关系
(1) 空关系:即空集
。
(2) 全域关系:即两个集合的笛卡尔积本身
。
(3) 同一集合上的关系:即离开集等于到达集的关系
。
(4) 恒等关系:同一集合上的每个元素只与自身有关系,即
。
逆运算与复合运算定理
定理2
(1)
;
(2)
;
(3)
;
(4)
;
(5)
;
(6)
;
(7)
;
(8) 若
与
是单射,则
是单射;
(9) 若
与
是函数,则
是函数;
(10) 若
与
是满射,则
是满射;
(11)
是函数当且仅当
是双射。
证明见附录二
同一集合上的关系的性质
(1) 自反性:对于所有的
,存在
。换句话说,包含恒等关系的所有关系
。
(2) 非自反性:对于所有的
,不存在
。换句话说,与恒等关系没有交集的所有关系
。
(3) 对称性:对于所有的
,
仅当
。换句话说,满足
的所有关系。
(4) 非对称性:对于所有的
,
仅当不存在
。换句话说,满足
的所有关系。
(5) 反对称性:对于所有的
,
且
仅当
。换句话说,满足
的所有关系。
(6) 传递性:对于所有的
,
且
仅当
。换句话说,满足
的所有关系。
等价关系
等价关系被定义为满足自反性、对称性与传递性的关系。例如集合
上的一个等价关系
。某个元素
的
等价类
被定义为
。例如等价类
与
。进一步我们发现所有不同的等价类
与原集合
之间的性质:
且
。于是集合
称作集合
的一个
划分。集合
的一个划分被定义为
的一些子集的集合,这些子集称作
块,所有的块的并集为原集合且每两个不同的块没有交集,即每个块
满足条件:
- 对于所有的
,有
。
- 对于所有的
,其中
,有
。
易证
当且仅当
。同时也易证集合
上的一个等价关系
确定该集合的一个划分
。反之集合
的一个划分
确定该集合上的一个等价关系
。换句话说,
的一个关于等价关系
的
商集
被定义为
。易证
是一个划分且对于每个划分
,存在一个等价关系
使得
(证明见附录二)。理解等价关系的概念非常重要,因为之后的理论学习中会有非常多的商集如商图、商群和商空间(本书3.E仿射集)。
二元运算
二元运算被定义为一个函数
,该函数将有序对
映射到唯一元素
,记为
或
或
。例如设集合
,集合
与集合
,定义二元运算
使得
,
,
与
。
半群被定义为集合
上的一个二元运算
并满足以下条件:
- 封闭性:对于所有的
,
。
- 结合律:对于所有的
,有
。
由于结合律导致运算结果与多个运算执行顺序无关(只要元素的位置不变),所以去掉括号后的乘积
可以无歧义地表达运算结果,多个元素的二元运算同理。半群可记为
或在无歧义的情况下省略运算符直接记为
。例如正整数加法运算
。
左单位元:存在某个
,使得对于所有的
,
。
右单位元:存在某个
,使得对于所有的
,
。
双单位元(简称单位元):存在某个
,使得对于所有的
,
。
一个半群可以存在多个左单位元或右单位元,但是如果同时存在左单位元和右单位元,那么左单位元等于右单位元且是双单位元。易证单位元
是唯一的(证明见附录二)。
幺半群被定义为有单位元的半群
,即存在一个
使得对于所有的
有
。例如非负整数加法运算
,单位元是
。
的
左逆元:存在某个
使得对于某个
,
。
的
右逆元:存在某个
使得对于某个
,
。
的
双逆元(简称
逆元):存在某个
使得对于某个
,
。
一个幺半群内的某个元素可以存在多个左逆元或多个右逆元。但是如果同时存在左逆元和右逆元,那么左逆元等于右逆元且是双逆元。易证逆元
是唯一的(证明见附录二)。
左消去律:若对于每个
,存在一个左逆元
使得
成立,那么
;
右消去律:若对于每个
,存在一个右逆元
使得
成立,那么
;
双消去律(简称消去律):满足左消去律与右消去律。
群被定义为有逆元的幺半群
,即对于所有的
,存在一个
使得
。若还满足
交换律——对于所有的
,有
,则群
被称作
交换群或
Abel群。例如整数加法运算
,其中
的逆元是相反数
。
对于所有的正整数
,
元素的幂被定义为
个
的迭代积
对于正整数幂,
个
的迭代积
对于负整数幂,
对于零次幂。
群的一些定理
定理3
(1) 满足消去律;
(2)
的单位元
与
的逆元
唯一;
(3)
;
(4)
;
(5)
;
(6)
;
(7) 对于交换群,有
(8) 对于所有的
,关于
的方程
或
在群
内有唯一解,即存在唯一的
使得方程成立。其中由方程
得到的解
可记为
称作
左除以
。由方程
得到的解
可记为
称作
右除以
。如果是交换群,则两除法等价
,简称
除以
。该定理可作为定义群的条件替换掉原两个条件——含有单位元和逆元。换句话说,如果半群拥有该条件,那么该半群就是群。
证明见附录二
左分配律:对于所有的
与
上两个二元运算
,
对
有左分配律若满足
;
右分配律:对于所有的
与
上两个二元运算
,
对
有右分配律若满足
;
双分配律(简称分配律):满足左分配律与右分配律。
环被定义为集合
上的两个二元运算
与
并满足以下条件:
-
是交换群。
-
是半群。
-
对
满足分配律。
环可记为
或在无歧义的情况下省略运算符直接记为
。默认
比
拥有更高的运算优先级,所以表达式
可去掉括号和运算符简写为
,但是表达式
只能简写为
。若
是幺半群,则
被称作
单位环或
幺环(由于单位环太常见了,所以有时把条件(2)中的半群要求改为幺半群来定义环)。若
满足交换律,则
被称作
交换环。因此
被称作
加法,单位元称作
零元记为
,逆元记为
。
被称作
乘法,单位元称作
幺元记为
,逆元记为
。
环的一些定理
定理4
(1) 对于所有的
,
;
(2) 对于所有的
,
;
(3) 若
,则环只有一个元素,被称作
零环或
平凡环。
证明见附录二
左零元:存在某个
,使得对于所有的
,
;
右零元:存在某个
,使得对于所有的
,
;
双零元(简称零元):存在某个
,使得对于所有的
,
。
一个半群可以存在多个左零元或右零元,但是如果同时存在左零元和右零元,那么左零元等于右零元且是双零元。易证零元
是唯一的(证明见附录二)。
左零因子:对于某个
,若存在非零元素
使得
;
右零因子:对于某个
,若存在非零元素
使得
;
双零因子(简称零因子):对于某个
,若存在非零元素
使得
。
显然地,
是零因子,不等于
的零因子称作
非零元零因子(因为主要讨论非零元零因子,所以有时零因子的定义里中的
被限制为非零元素)。同时可发现,若存在非零元素
使得
,则
是左零因子,
是右零因子。若半群
满足交换律,则所有左零因子的集合等于所有右零因子的集合——因此集合内的每个元素都是零因子。如果环
满足乘法交换律和无非零元零因子,那么环
被称作
整环。如果环
中的每个非零元素乘法可逆,即对于所有的非零元素
,存在
使得
,那么环
被称作
除环。如果除环满足乘法交换律,那么除环也被称作
域
,其中可逆交换乘法用
表示。乘法可逆元素称作
单位,所有乘法可逆元素的集合称作
单位组。线性空间的定义中我们发现是由向量集合
和域
上的加法
与数乘
定义的,记作
或简记
或
(若
已声明并保持不变)。其中加法满足群的公理,数乘公理类似于域,满足结合律、单位元和分配律。如果把域替换成环,则定义出了环
上的
左模或
右模(统称
模),是线性空间概念的推广。
关于零因子、零环、整环、除环、域的一些定理
定理5
(1) 零因子没有乘法逆元;
(2) 一个元素是可消去的仅当该元素不是零因子;
(3) 零环中的
是单位,但不是零因子;
(4) 零环是最小的环;
(5) 整环中的任意两个元素
,若
,则
或
;
(6) 整环中的任意非零元素都是可消去的;
(7) 幂零元
和不为
的幂等元
都是零因子;
(8) 除环没有非零元零因子;
(9) 除环的单位是所有非零元素;
(10) 域是除环和整环;
(11) 域至少有两个元素组成
;
(12)
是最小的域。
证明见附录二
子群、群同态、商群、陪集、正规子群
群
的
子群
被定义为群
的子集
使得子集
在群
中的运算下
也是个群。准确地说,对于某个
,若对于所有的
满足以下条件:
-
-
-
则群
是群
的子群。
是最小的子群,称作
零群或
平凡群。
本身就是最大的子群。两个子群的交是一个子群。但两个子群的并不一定是子群。例如整数加法群
的子集——全体偶数
是一个子群;全体
的倍数
也是一个子群;两个子群的交
即
的倍数
也是一个子群,但是两个子群的并
就不是一个子群了,因为
但是
。
两个群
与
的
积被定义为
,其中
被定义为
对于所有的
与
。易证积是一个群。例如群
与群
的积为
其中
。
从群
至群
的
同态被定义为一个函数
使得对于所有的
,有
。如果
是单射,那么
被称作
单同态。如果
是满射,那么
被称作
满同态。如果
是双射,那么
被称作
同构。同态
的像也称作
同态像,记为
。
的单位元
的原像称作同态
的
核,即满足
的所有的
的集合
。例如函数
就是从群
至群
的同构,同态像是
,核是
。函数
就是从群
至群
的同构,同态像是
,核是
(证明见附录二)。
群
上的
同余关系
被定义为一个等价关系使得对于所有的
,若
且
,则
。换句话说,两个等价类里的元素的所有可能的积的集合是另一个等价类。例如将整数加法群划分成奇数和偶数得到的等价关系是一个同余关系。由同余关系
划分出来的商集
在新的二元运算
与
下是一个群,称作
商群。显然,群
与它的商群
存在同态
与
,称作
自然同态。设存在同态
。若
,则存在从商群
至群
的唯一同态
使得
(证明见附录二)。
例如整数加法群
与模
同余加法群
存在同态
,同态像是模
余数等价类
,核是所有
的倍数
。同样的整数加法群
与模
同余加法群
存在同态
,同态像是模
余数等价类
,核是所有
的倍数
。因为等价类
,所以存在同态
,将
映射到
,将
映射到
。并且
。
群
内元素
关于子群
的
左陪集
被定义为
。类似地,
右陪集
被定义为
。若左右陪集相等
,则子群
被称为
正规子群,一般记作
。显然如果
是交换群,那么任意子群
都是正规子群。同时可以证明所有陪集的集合
或
是群
的一个划分。若
是正规子群
,则根据正规子群的所有陪集进行的划分对应的等价关系是同余关系,即生成商群
。正规子群
是从群
至商群
自然同态
的核,即
(证明见附录二)。
附录二、附录一中的定理证明(更新中)