python训练数据集_python – Numpy:如何将数据集(数组)分割/分割为训练和测试数据集,例如交叉验证?...

如果你想把数据集分成两半,你可以使用numpy.random.shuffle或numpy.random.permutation如果你需要跟踪索引:

import numpy

# x is your dataset

x = numpy.random.rand(100, 5)

numpy.random.shuffle(x)

training, test = x[:80,:], x[80:,:]

要么

import numpy

# x is your dataset

x = numpy.random.rand(100, 5)

indices = numpy.random.permutation(x.shape[0])

training_idx, test_idx = indices[:80], indices[80:]

training, test = x[training_idx,:], x[test_idx,:]

import numpy

# x is your dataset

x = numpy.random.rand(100, 5)

training_idx = numpy.random.randint(x.shape[0], size=80)

test_idx = numpy.random.randint(x.shape[0], size=20)

training, test = x[training_idx,:], x[test_idx,:]

最后,sklearn包含几个交叉验证方法(k折,留n出,分层k折,…)。对于文档,您可能需要查看示例或最新的git存储库,但代码是坚实的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值