python数据集的预处理,Python数据预处理—训练集和测试集数据划分

本文介绍了如何使用Python机器学习库sklearn中的train_test_split函数来分割数据集,包括其参数test_size用于指定测试集比例或数量,以及random_state用于确保可重复的随机抽样。通过实例展示了如何将数据划分为训练集和测试集。
摘要由CSDN通过智能技术生成

转自:https://www..com/zhanglianbo/p/5701009.html

使用sklearn中的函数可以很方便的将数据划分为trainset 和 testset

该函数为sklearn.cross_validation.train_test_split,用法如下:

>>> import numpy as np

>>> from sklearn.cross_validation import train_test_split

>>> X, y = np.arange(10).reshape((5, 2)), range(5)

>>> X

array([[0, 1],

[2, 3],

[4, 5],

[6, 7],

[8, 9]])

>>> list(y)

[0, 1, 2, 3, 4]

>>> X_train, X_test, y_train, y_test = train_test_split(

... X, y, test_size=0.33, random_state=42)

...

>>> X_train

array([[4, 5],

[0, 1],

[6, 7]])

>>> y_train

[2, 0, 3]

>>> X_test

array([[2, 3],

[8, 9]])

>>> y_test

[1, 4]

其中 test_size是样本占比,如果是整数的话就是样本的数量;

random_state是随机数的种子,不同的种子会造成不同的随机采样结果,相同的种子采样结果相同。

参考:

http://blog.sina.com.cn/s/blog_6a90ae320101a5rc.html

http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.train_test_split.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值