题目一:https://www.nowcoder.com/practice/166eaff8439d4cd898e3ba933fbc6358?tpId=46&tqId=29117&tPage=1&rp=1&ru=/ta/leetcode&qru=/ta/leetcode/question-ranking
题目翻译:
机器人位于m x n网格的左上角(在下图中标记为“开始”)。
机器人只能在任何时间点向下或向右移动。 机器人试图到达网格的右下角(在下图中标记为“完成”)。
有多少个可能的唯一路径?
上面是一个3×7的网格。 有多少个可能的唯一路径?
注意:m和n最多为100。
思路:这道题目是一道典型的动态规划问题。从多个小问题的解的合并能够解决最终原问题的解。得出的递推式:res[i][j] = res[i-1][j] + res[i][j-1]; 初始化的时候将res二维数组的第一行第一列都置为1,方便计算。
代码:
classSolution {public:int uniquePaths(int m, intn) {
vector> res(m, vector(n, 1));// 初始化二维数组for (int i = 1; i
res[i][j]= res[i-1][j] + res[i][j-1];
}return res[m-1][n-1];
}
};
题目二:https://www.nowcoder.com/practice/3cdf08dd4e974260921b712f0a5c8752?tpId=46&tqId=29116&tPage=4&rp=4&ru=/ta/leetcode&qru=/ta/leetcode/question-ranking
题目翻译:
唯一路径”的后续跟踪:
现在考虑如果一些障碍物添加到网格。 有多少独特的路径会有?
障碍物和空白区域在网格中分别标记为1和0。
例如,
在3x3网格的中间有一个障碍物,如下所示。
[
[0,0,0],
[0,1,0],
[0,0,0]
]]
唯一路径的总数为2。
注意:m和n最多为100。
思路:这道题其实是上面那个题目的衍生,方法肯定还是dp,但是要对出现障碍物的位置进行特殊处理。试想当只有一行的时候,某个障碍物出现,那么到达路径为0.只有一列的时候也是一样。所以首先初始化的时候对第一行第一列上面出现障碍物的地方将path[i][0] 和path[0][i]都置为0.然后我们还是利用上面的递推式进行计算:res[i][j] = res[i-1][j] + res[i][j-1]。循环计算的时候如果碰到障碍物,就将path[i][j]置为0.这样就解决了这个问题。
代码:
classSolution {public:int uniquePathsWithObstacles(vector > &obstacleGrid) {int row =obstacleGrid.size();int col = obstacleGrid[0].size();
vector > res(row, vector(col, 0));for (int i=0; i
res[0][i] = 1;if (obstacleGrid[0][i] == 1){
res[0][i] = 0;break;
}
}for (int i=0; i
res[i][0] = 1;if (obstacleGrid[i][0] == 1){
res[i][0] = 0;break;
}
}for (int i=1; i
res[i][j]= res[i-1][j] + res[i][j-1];if (obstacleGrid[i][j] == 1)
res[i][j]= 0;
}
}return res[row-1][col-1];
}
};