~~~~~~~分--隔--符~~~~~~~
《关于特殊三角形边角关系的总结》是我当年在中学学习的时候自己总结的,现在成了教育人的一份子。上个月花时间重新总结了一下,想着可以发表分享给更多的同仁。遂投稿给了几家杂志社,无奈,版面费用高昂,无力承担。
就只能发表在自己这个免费的公众号里,希望可以分享给更多的同仁,共同探讨学习。
三角形既是平面几何的基础,也是几何学习的重点。我们从小学开始接触学习三角形,到现在已经积累了不少关于三角形的知识。为了更好地掌握,需要我们对这些知识进行总结,找到其中的一般性与特殊性,有利于以后的学习。下面我就对特殊三角形进行了一点总结,希望可以和大家共同探讨学习。
对于一般三角形的边角关系主要有:①两边之和大于第三边,两边之差小于第三边;②三角形的内角和为180°;③三角形外角和为360°;④直角三角形的勾股定理等。
中学阶段常接触到的特殊三角形主要包含以下几种:30°直角三角形、45°直角三角形、3-4-5直角三角形、等边三角形、36°黄金三角形、108°黄金三角形、120°等腰三角形。虽然课标只要求了前四种,但是其他的几种情形在考试和平常练习中也经常出现,如果能熟悉这些特殊三角形的模型,那么在做题的时候就可以快人一步,抢先解出答案,节省解题时间。
一、30°直角三角形
如上图所示的Rt△ABC,∠A=90°,∠B=60°,∠C=30°。
其三边之比AB:AC:BC=,此结论通过勾股定理可以很容易就给出证明。当AB=1时,其面积为,其他与之相似的三角形面积也是它的倍数。
二、45°直角三角形
如上图所示的Rt△ABC,∠A=90°,∠B=45°,∠C=45°。
其三边之比AB:AC:BC=,此结论通过勾股定理也可以很容易就给出证明。当AB=1时,其面积为。
…………………………………………
特殊三角形的边角关系结论不仅适用在几何计算,还用于解三角函数问题,特别是直角三角形,还有利于对三角函数值的理解和记忆。初中阶段的学习多以模仿和记忆为主,所以,如果能够记住并理解这些结论,就可以更加快捷地解答题目,还有利于以后的学习。
若有人有心支持,可以与我联系【1349524227@qq.com】,可以发word原稿。
学习是自己的事情,成绩也是自己的,未来也是自己的。
~~~~~~~福--利--线~~~~~~~
打开支付宝首页搜“ 551637526 ”即刻领到红包,最高99元!红包有效期3天,每天都可领!
后台回复 关键字 “红包”,即可查看使用详情。
~~~~~~~E--N--D~~~~~~~