直角三角形的边角关系_关于特殊三角形边角关系的总结

d3d8fa28775f12826e49b8183437cf17.png

~~~~~~~分--隔--符~~~~~~~

《关于特殊三角形边角关系的总结》是我当年在中学学习的时候自己总结的,现在成了教育人的一份子。上个月花时间重新总结了一下,想着可以发表分享给更多的同仁。遂投稿给了几家杂志社,无奈,版面费用高昂,无力承担。

45d92031de32df70e01563f8a7019e3a.png

就只能发表在自己这个免费的公众号里,希望可以分享给更多的同仁,共同探讨学习。

b7edc8b4771f681f6105dbf1ef2e97c6.png

4505e450dbe13698e0742fc352f88e6c.png

a65caea07aac4eba8100004b9ae19a32.png

0274243fc8459ada688a2995887369e7.png

75981603b148c010b8fc50a2683d971a.png

f34d1a2485aad7a2e5c337cdff736a31.png

三角形既是平面几何的基础,也是几何学习的重点。我们从小学开始接触学习三角形,到现在已经积累了不少关于三角形的知识。为了更好地掌握,需要我们对这些知识进行总结,找到其中的一般性与特殊性,有利于以后的学习。下面我就对特殊三角形进行了一点总结,希望可以和大家共同探讨学习。

对于一般三角形的边角关系主要有:①两边之和大于第三边,两边之差小于第三边;②三角形的内角和为180°;③三角形外角和为360°;④直角三角形的勾股定理等。

中学阶段常接触到的特殊三角形主要包含以下几种:30°直角三角形、45°直角三角形、3-4-5直角三角形、等边三角形、36°黄金三角形、108°黄金三角形、120°等腰三角形。虽然课标只要求了前四种,但是其他的几种情形在考试和平常练习中也经常出现,如果能熟悉这些特殊三角形的模型,那么在做题的时候就可以快人一步,抢先解出答案,节省解题时间。

一、30°直角三角形

如上图所示的Rt△ABC,∠A=90°,∠B=60°,∠C=30°。

其三边之比AB:AC:BC=,此结论通过勾股定理可以很容易就给出证明。当AB=1时,其面积为,其他与之相似的三角形面积也是它的倍数。

二、45°直角三角形

如上图所示的Rt△ABC,∠A=90°,∠B=45°,∠C=45°。

其三边之比AB:AC:BC=,此结论通过勾股定理也可以很容易就给出证明。当AB=1时,其面积为。

 …………………………………………

特殊三角形的边角关系结论不仅适用在几何计算,还用于解三角函数问题,特别是直角三角形,还有利于对三角函数值的理解和记忆。初中阶段的学习多以模仿和记忆为主,所以,如果能够记住并理解这些结论,就可以更加快捷地解答题目,还有利于以后的学习。


若有人有心支持,可以与我联系【1349524227@qq.com】,可以发word原稿。

学习是自己的事情,成绩也是自己的,未来也是自己的。

~~~~~~~福--利--线~~~~~~~

9e989c6f09f756bd94059c88918f05c5.gif9e989c6f09f756bd94059c88918f05c5.gif9e989c6f09f756bd94059c88918f05c5.gif打开支付宝首页搜“ 551637526 ”即刻领到红包,最高99元!红包有效期3天,每天都可领!9e989c6f09f756bd94059c88918f05c5.gif9e989c6f09f756bd94059c88918f05c5.gif9e989c6f09f756bd94059c88918f05c5.gif

后台回复 关键字 “红包”,即可查看使用详情。

~~~~~~~E--N--D~~~~~~~

8f33aa73b7597fd7662739cd6d6cf585.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值