三角函数:直角三角形内角关系公式

本文通过单位圆模型详细探讨了三角函数间的基本关系,包括sinα与cosα的关系、直角三角形内角关系及诱导公式等内容,并进一步讨论了这些函数的周期性和角与直角之间的转换关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

紧接上一章:http://blog.csdn.net/yinhun2012/article/details/79363173

了解过一些约定俗成的基本定义后,这一篇主要做一些内角关系的推导,为后面程序中计算做铺垫

1.sinα与cosα的关系,还是建立单位圆,可以得到sin²α+cos²α = 1


ps:这里假如我们喜欢追根溯源的话,就会问为什么直角三角形存在两临边的平方和等于斜边的平方,如下:


这里我们依靠四个直角三角形拼成一个边(a+b)的大正方形和边c的小正方形,然后根据大正方形的面积=小正方形的面积加上四个直角三角形的面积,就能推导出c² = a²+b²


2.直角三角形内角之间的关系,α+β+90° = 180°,那么α+β = 90°,可以推出以下公式:

sinα = sin(90°-β) = cosβ = cos(90°-α)



3.一些诱导公式:sin(-α) = -sinα,cos(-α) = cosα,tan(-α )= cosα/sinα =  -tanα,如下图:


这里我们依旧建立单位圆进行锐角和钝角情况下的观察。


4.函数的周期性,sinα和cosα的周期性为2π,如下图:

我们建立单位圆,角α无论绕圆多少圈,实际上角度是一样的


那么tanα的周期性是如何呢,sinα和cosα的周期性是2π,那么tanα = sinα/cosα,所以周期性也是2π,不过继续往下看图:


我们看到,分锐角和钝角两种情况,其实tanα的周期性最小位π,那么我们可以认为π就是tanα的周期


5.推一下角与直角之间的关系,比如sin(α+90°)和cos(α+90°)和sinα、cosα之间的转换关系,如下图:



上图我们先建立钝角β和β+90°,然后做β+90°的终止边的反向线,建立锐角α进行辅助计算,就能得到结论:

sinα = -cos(90°+α)

cosα = sin(90°+α)




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值