python未知数的矩阵运算,机器学习的数学 之python矩阵运算

本文介绍了矩阵的概念、应用,以及在Python中如何使用NumPy进行矩阵运算,包括矩阵乘法、求逆、转置等。通过实例展示了矩阵在解决实际问题中的作用,如图像处理和线性代数计算,是理解机器学习数学基础的重要部分。
摘要由CSDN通过智能技术生成

d77ec0106ae8d0ec37feec331cda1159.png

本文提纲

1. 什么是矩阵

2. 矩阵在现实应用场景

3. 矩阵表示

4. 矩阵运算

5. 理解矩阵乘法

一、 什么是矩阵

一个 m × n 的矩阵是一个由 m 行 n 列元素排列成的矩形阵列。以下是一个由 6 个数字元素构成的 2 行 3 列的矩阵:

ef8700158491869283d3c1c70c16e31b.png

矩阵属于线性代数数学分支。线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。表面上,排成矩形的数字就是个矩阵。实际,矩阵是有限维线性空间的线性变换的表示形式。它代表着空间到空间的映射。

二、 矩阵在现实应用场景

在程序中,配合矩阵模拟真实数据,并可以实现如下功能:二维图形变换、人脸变换、人脸识别、信息转换等。比如一张图片,简单的黑白图只有黑色和白色构成,是不是可以有 1 0 两个数值的二维矩阵来表示呢?自然,尤其在图像处理里面,图像信息是用二维矩阵数据。

矩阵分析,是一种方便的计算工具,可以以简单的形式表达复杂的信息。

三、 矩阵表达式

我们选择 Pyth

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值