夜间灯光数据dn值_探讨DMSP/OLS夜间灯光数据的校正

本文探讨了DMSP/OLS夜间灯光数据存在的不连续性和像元饱和问题,提出了一种基于不变区域的校正方法。通过选取稳定的区域作为参考,进行指数、线性等回归分析,选用最佳方程建立校正模型,解决了多传感器影像的不连续和DN值异常波动。精度验证显示,校正后的数据具有更好的连续性和一致性,适用于长时间序列分析。
摘要由CSDN通过智能技术生成

李梦真

【摘 要】随着夜间灯光数据的广泛应用,夜间灯光数据的长时间序列应用逐渐受到人们关注。但应用最广的DMSP/OLS数据,具有数据之间的不连续性以及像元饱和问题,所以需要对这种数据进行校正。本文介绍了一种基于不变区域的夜间灯光数据校正方法,能够合理的解决DMSP/OLS数据所存在的问题。

【关键词】 夜间灯光 DMSP/OLS 像元饱和 校正

美国国防气象卫星(Defense Meteorological Satellite Program, DMSP)搭载的业务型线扫描传感器(Operational Linescan System, OLS)最初主要为气象监测而设计,用于探测月光照射下的云,后来由于其独特的光电放大能力使其能在夜间探测到地表微弱的近红外辐射,因此,该传感器获取的夜间灯光影像被越来越多的用来研究人类活动,目前主要应用于社会经济参数估算、城市化监测与评估、人口发展与估算以及重大事件评估。

一、存在的缺陷

DMSP/OLS 夜间灯光影像本身存在缺陷,该数据集包括由多个DMSP卫星传感器获取的自1992-2012年共33期影像,其中存在由不同传感器获取的同一年度的影像。因为卫星传感器在获取地表数据的过程受到多种因素的影响,所以不同传感器获取的同一年度的影像之间是有差异的。同时,不同的OLS传感器在获取影像时并没有进行星上辐射校正,造成了同一个卫星传感器获取的连续不同年度的影像间相同位置的亮值像元DN值之间的异常波动。所以长时间序列的DMSP/OLS夜间灯光影像数据集主要存在2个问题需在校正中解决:(1)原始影像数据集中的影像是非连续性的;(2)数据集中的每一期影像都存在着像元DN值饱和的现象。所以针对这些问题前人做了很多研究,目前已经能较好的解决长时间序列的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值