matlab哈密顿算子点乘,哈密顿算子汇总.ppt

哈密顿算子 哈密顿引进了一个矢性微分算子: 称为哈密顿算子或 算子。 算子本身并无意义,而是一种微分运算符 号,同时又被看作是矢量。 其运算规则如下: 由此可见,数量场u的梯度与矢量场A的散度与旋 度都可用 表示。 此外,为了在某些公式中使用方便,我们还引进如下的一个数性微分算子 它既可作用在数性函数u(M)上,又可作用在 矢性函数B(M)上。如 应当注意这里 与 是完全不同的。 现在我们把用 表示的一些常见公式列 在下面,以便于查用,其中u,v是数性函数, A,B为矢性函数。 在下面的公式中 (27)奥氏公式 (28)斯托克斯公式 例1 证明 证 算子 实际上是三个数性微分算子 的线性组合,而这些数性微分算子是服从 乘积的微分法则的,就是当他们作用在两个函数的 乘积时,每次只对其中一个因子运算,而把另一个 因子看作常数。因此作为这些数性微分算子的线性 组合的 ,在其微分性质中,自然也服从乘积的微 分法则。 明确这一点,就可以将例1简化成下面的方法来证明。 证 根据 算子的微分性质,并按乘积的微分 法则,有 例2 证明 证:根据 算子的微分性质,并按乘积的微分法 则,有 例3 证明 证 根据 算子的微分性质,并按乘积的微分法 则,有 在 ▽算子的运算中,常常用到三个矢量的混合积公式 这些公式都有几种写法,因此在应用这些公式 时,就要利用它的这个特点,设法将其中的常 矢都移到▽的前面,同时使得变矢都留在▽ 的后面。 例8 验证格林第一公式与格林第二公式 证 在奥氏公式 中,取 并应用公式(10)有 同理 将此两式相减,即得格林第二公式。 * * *第一章 矢量分析 * * *第一章 矢量分析 * (c为常数), (c为常数), (c为常数), (c为常矢), (c为常矢), (其中Δu为调和量) (其中 ) 在上式右端,我们根据乘积的微分法则把暂时看成常数的量,附以下标c,待运算结束后,再将其除去。依此,根据公式(1)就得到 由公式(2),(7)分别有 所以 由矢量混合积的轮换性: 将上式两端中的常矢都轮换到▽的前面,同时使得变矢都留在▽的后面 所以 及二重矢量积公式 * * *第一章 矢量分析 * * *第一章 矢量分析 * * *

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值