0阶贝塞尔函数_函数的幂级数展开

本文详细探讨了常见的幂级数展开方法,包括0阶贝塞尔函数的计算,以及利用实部虚部进行求解。同时,介绍了带有欧拉数、伯努利数和黎曼函数的级数展开,以及其他各种求和级数和无穷乘积式的证明。通过傅里叶级数和一些特定函数的展开,展示了级数在数学分析中的广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章内容

  1. 常见展开
  2. 带有欧拉数、伯努利数、黎曼函数的级数展开
  3. 其它求和级数
  4. 无穷乘积式

如果有时间可以点开引用,了解对应级数地更多知识。


一、常见展开

分为两大类,分别来自幂函数,

收敛 ;还有指数函数,复平面内都收敛。

1、

[1]

2、

及其积分

3、

及其积分

4、指数函数系

5、求

处导函数值

[2]

6、贝塞尔函数(计算方法同上)

第一类贝塞尔函数(其余见[3](4-1)式至(4-5)式)

7、利用实部虚部

[4]

二、带有欧拉数、伯努利数、黎曼函数的级数展开

首先给出这几个定义

然后可以推得[5]

黎曼函数相关

[6]

[7]

三、其它求和级数

以下可通过傅里叶级数证明[8]

Digamma函数

[9]

Polygamma函数

[10]

Euler-Maclaurin公式

[11]

四、无穷乘积式

以下两式可阅读[12]

五、参考文章

tetradecane:复变函数(3)——复级数,泰勒级数,洛朗级数​zhuanlan.zhihu.com
64c274ba1ad2047f413a6848431ce2d2.png

参考

  1. ^予一人-如何计算下面的级数 https://www.zhihu.com/question/398235491/answer/1253968713
  2. ^予一人-一个较复杂的积分 https://zhuanlan.zhihu.com/p/100951677
  3. ^非初等函数整理 https://zhuanlan.zhihu.com/p/147922530
  4. ^请问这道定积分的题目怎么写?(予一人) https://www.zhihu.com/question/401216697/answer/1282671616
  5. ^请问这四个展开式是怎么来的?(Aries) https://www.zhihu.com/question/398250488/answer/1263706418
  6. ^你绝对从未见过的有关黎曼ζ函数的一堆可爱级数(Aries) https://zhuanlan.zhihu.com/p/144278965
  7. ^TravorLZH——可以留下一个优美的函数展开式吗? https://www.zhihu.com/question/391908559/answer/1230000771
  8. ^请问下面这道题,利用cosax的傅里叶展开证明cotx和cscx的级数,如何证明? https://www.zhihu.com/question/398552488/answer/1256968012
  9. ^TravorLZH——可以留下一个优美的函数展开式吗? https://www.zhihu.com/question/391908559/answer/1230000771
  10. ^非初等函数整理 https://zhuanlan.zhihu.com/p/147922530
  11. ^ 欧拉-麦克劳林公式(匿名回答) https://www.zhihu.com/question/65760141/answer/234792462
  12. ^TravorLZH-Gamma函数的那些事儿(1)——定义 https://zhuanlan.zhihu.com/p/114041258
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值