文章内容
- 常见展开
- 带有欧拉数、伯努利数、黎曼函数的级数展开
- 其它求和级数
- 无穷乘积式
如果有时间可以点开引用,了解对应级数地更多知识。
一、常见展开
分为两大类,分别来自幂函数,
1、
2、
3、
4、指数函数系
5、求
6、贝塞尔函数(计算方法同上)
第一类贝塞尔函数(其余见[3](4-1)式至(4-5)式)
7、利用实部虚部
二、带有欧拉数、伯努利数、黎曼函数的级数展开
首先给出这几个定义
然后可以推得[5]
黎曼函数相关
三、其它求和级数
以下可通过傅里叶级数证明[8]
Digamma函数
Polygamma函数
Euler-Maclaurin公式
四、无穷乘积式
以下两式可阅读[12]
五、参考文章
tetradecane:复变函数(3)——复级数,泰勒级数,洛朗级数zhuanlan.zhihu.com
参考
- ^予一人-如何计算下面的级数 https://www.zhihu.com/question/398235491/answer/1253968713
- ^予一人-一个较复杂的积分 https://zhuanlan.zhihu.com/p/100951677
- ^非初等函数整理 https://zhuanlan.zhihu.com/p/147922530
- ^请问这道定积分的题目怎么写?(予一人) https://www.zhihu.com/question/401216697/answer/1282671616
- ^请问这四个展开式是怎么来的?(Aries) https://www.zhihu.com/question/398250488/answer/1263706418
- ^你绝对从未见过的有关黎曼ζ函数的一堆可爱级数(Aries) https://zhuanlan.zhihu.com/p/144278965
- ^TravorLZH——可以留下一个优美的函数展开式吗? https://www.zhihu.com/question/391908559/answer/1230000771
- ^请问下面这道题,利用cosax的傅里叶展开证明cotx和cscx的级数,如何证明? https://www.zhihu.com/question/398552488/answer/1256968012
- ^TravorLZH——可以留下一个优美的函数展开式吗? https://www.zhihu.com/question/391908559/answer/1230000771
- ^非初等函数整理 https://zhuanlan.zhihu.com/p/147922530
- ^ 欧拉-麦克劳林公式(匿名回答) https://www.zhihu.com/question/65760141/answer/234792462
- ^TravorLZH-Gamma函数的那些事儿(1)——定义 https://zhuanlan.zhihu.com/p/114041258