0阶贝塞尔函数_结构动力学中的模态分析(1) —— 线性系统和频响函数

e5f12dcc709868a37635728355bcefb2.png

引言

在结构动力学分析或设计中,常常会接触到“模态”这个概念。模态分析是动力学分析的基础,也是系统动力学设计最为关键的一个环节。

模态的英文为ModalMode,从字面理解,它表征一种形式或模式,实际上也差不多就是这个意思。在动力学中,可以理解为结构以某种方式运动。

fe54b827e7d761a6e68f1c4745df6890.gif

模态包含固有频率/阻尼比和振型等特征;一个自由度为N的系统,它包含有N阶模态,通常将固有频率由小到大排列;结构设计中常说的结构基频,以及结构固有频率指的就是第一阶固有频率,也就是结构最低的频率。而对于一个分布参数系统(连续体),如梁、壳和实体等,它有无穷多个自由度,因此有无穷多阶模态,而在实际应用中,往往会对其采取截断的方法,只选取前面有用的M阶。

对于不熟悉结构动力学的设计师而言,一个结构具有多个固有频率可能是一个不那么好理解的现象;此外,为什么要有模态这么个概念,以及在动力学设计和分析中的作用是什么。对于上述疑问,本文尽可能给出直观,但不严格的说明和示例,以便更好的理解模态。

线性系统

在介绍模态之前,先简单介绍两个关系密切的概念:线性系统频率响应函数

线性系统的一个主要特点就是具有线性叠加的特性。换句话说,一个看起来比较复杂的系统,我们可以把它分解为一系列比较好理解的基础成分,再通过某种方式将它们组合起来。

举个直观的例子。

y=sin(x)+sin(2x)+sin(3x)

2e6c14c9506c6e261788ae2f9ceaf92c.png

看起来很复杂…

我们把y分解为3个部分

70eecb149b9525d02c14362e3340f9af.png

看起来是不是简单了不少,再按照原始方程把它们组合起来

574d9386497af8bbfd8ab76e25aa67b9.gif

这个就是线性叠加,这里将x看作了时间轴,y看作点的运动轨迹。

在动力学中,如果把x看作梁的长度方向,y看作是振动幅度,那么sin(x)之类就是我们的基础振动模式,y就是最大的振动幅度,梁的运动过程就变成了这样。

1f4520fcb3c9b07906242fdcecdbebbb.gif

对于线性动力系统,响应可以通过一系列基础振动模式组合叠加。

线性系统还有一个特点是线性变换

举个简单的例子。

二维空间有两个基本的坐标轴:e1=(1,0)和e2=(0,1),那么空间中任意一点b可以通过e1和e2表示,假设b=(2,4),那么b=2*e1+4*e2;如果将坐标轴换一个,分别为e1’和e2’;e1’=(1,1)和e2’=(-1,1),那么b仍然可以通过e1’和e2’表示,b=3* e1’+1* e2’。

8e13442566dc14039255a8a24a33b9a7.png

在线性空间里,我们把e1和e2叫做基;可以证明,N维空间内,或N自由度系统,任意一个点可以由任意N个轴将它描述出来;不过前提是N个轴是“线性无关”的,通常我们还会将它“正交化”和“归一化”;这里不展开讲,只是给予一个感官上的认识;具体可以参考线性代数教程。事实上,不仅向量,函数也可以做类似的操作,只不过是在泛函空间下实现的,在分布参数系统中会用到。

频率响应函数

线性叠加告诉我们一种处理线性动力系统的方法。但是,针对不同的载荷,每个模式在响应中的贡献大小是如何确定的呢?

模态分析是一种基于谱的分析方法,频域自然是其中非常重要的信息。频率响应函数或传递函数就是用来描述频域下输入和输出关系的。

想象一个线性系统

d66e38a409965ab3d2dcae690e01f769.png

当给一个频率为w1的单位正弦信号输入,稳态输出幅值记为A1;给一系列的wi,输出一系列的幅值Ai;将横轴记为输入频率,纵轴记为输出幅值,构成了一个输入输出的曲线,这个曲线就是频率响应函数;频率响应函数描述的是系统输入和输出之间的关系;通常对于线性系统,输入和输出的频率是一致的。

68199ccda880d6d7404872df14ff96ff.png

图中凸起的部分代表了振动幅度大,对应的频率就是通常说的“共振点”。

一般来说,按照上述处理比较麻烦;事实上,将输入和输出分别做傅氏(拉氏)变换,再两者相除,即可得到频率响应函数;对于随机信号,也可以通过功率谱密度相除等方式得到。

有了这个频率响应函数后,不同激励条件下系统的响应就容易计算得到了。频率响应函数相当于告诉了我们,对于不同的激励,系统会如何响应,以及响应中每部分的贡献大小如何。

需要说明的是,一个频率响应函数描述的是一个输入点到一个输出点的关系,对于一个多自由度系统,可以通过一个频率响应函数矩阵描述。

最后

模态分析的相关数学内容先介绍这么多,下一篇文章中将会对模态分析进行详细讨论。

蒙特遇见卡罗:结构动力学中的模态分析(2) —— 实模态分析​zhuanlan.zhihu.com
acd5b70a2ea9c7061dee5d4832eb849c.png
蒙特遇见卡罗:结构动力学中的模态分析(3) —— 模态参数及实验模态分析​zhuanlan.zhihu.com
fe0068bbd996e6f99f86e4b54683c48e.png
蒙特遇见卡罗:结构动力学中的模态分析(4) —— 基于ANSYS的实现​zhuanlan.zhihu.com
11f4c83c35319c6e26ca1588e6f25f00.png

-完-

公众号同步更新:数联科技工作室

公众号内有更多内容!

一、电机振动原因 永磁同步驱动电机是电动汽车的核心零部件之一,其性能优劣直接决定了整车的品质。驱动电机的振动会产生严重的噪声污染,影响乘坐舒适性,更重要的是会使其性能有所下降。目前,电动汽车驱动电机的振动和噪音问题一直是我国电动汽车制造的薄弱环节,其技术很难达到国际标准的要求。   一般来说,逆变器控制的驱动电机振动原因可以简要概括四类:   (1)电磁噪声 电机气隙磁场相互作用产生随时间和空间变化的电磁力波,这种电磁力波将引起电机定子和壳体产生振动。定子与壳体的振动进而又引起周围空气的振动即产生电磁噪声。特别是当电磁力波的空间数与频率分别与定子结构模态振型与频率接近时,将会引起严重的共振。   (2)机械噪声 驱动电机的机械噪声一般由制造与装配时导致的偏心(静偏心、动偏心、混合偏心、定转子尺寸加工精度不良等)与轴承噪声引起。轴承因温升过高、载荷过大,润滑不良与安装不到位等使其出现异响,加剧轴承噪声。   (3)空气动力噪声 空气动力噪声,多产生于采用风扇自冷的电机。风扇叶片高速旋转,使周围气体产生涡流扰动以及周期性脉动,导致被搅动的气流碰撞散热筋、紧固螺栓和其他突出障碍物而产生噪声。为了减小空气阻力,高速运行的驱动电机转子结构件一般均未采用突出的紧固螺栓及散热筋,致使空气动力噪声在驱动电机领域并不明显。   (4)  开关噪声 控制器开关频率引起的一系列电流谐波,与气隙磁场相互作用产生的力波作用在定子上使其产生高频的振动噪声。开关噪声与其控制有直接相关,采用rPWM可以很好地削弱开关噪声。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值