引言
在结构动力学分析或设计中,常常会接触到“模态”这个概念。模态分析是动力学分析的基础,也是系统动力学设计最为关键的一个环节。
模态的英文为Modal或Mode,从字面理解,它表征一种形式或模式,实际上也差不多就是这个意思。在动力学中,可以理解为结构以某种方式运动。
模态包含固有频率/阻尼比和振型等特征;一个自由度为N的系统,它包含有N阶模态,通常将固有频率由小到大排列;结构设计中常说的结构基频,以及结构固有频率指的就是第一阶固有频率,也就是结构最低的频率。而对于一个分布参数系统(连续体),如梁、壳和实体等,它有无穷多个自由度,因此有无穷多阶模态,而在实际应用中,往往会对其采取截断的方法,只选取前面有用的M阶。
对于不熟悉结构动力学的设计师而言,一个结构具有多个固有频率可能是一个不那么好理解的现象;此外,为什么要有模态这么个概念,以及在动力学设计和分析中的作用是什么。对于上述疑问,本文尽可能给出直观,但不严格的说明和示例,以便更好的理解模态。
线性系统
在介绍模态之前,先简单介绍两个关系密切的概念:线性系统和频率响应函数。
线性系统的一个主要特点就是具有线性叠加的特性。换句话说,一个看起来比较复杂的系统,我们可以把它分解为一系列比较好理解的基础成分,再通过某种方式将它们组合起来。
举个直观的例子。
y=sin(x)+sin(2x)+sin(3x)
看起来很复杂…
我们把y分解为3个部分
看起来是不是简单了不少,再按照原始方程把它们组合起来
这个就是线性叠加,这里将x看作了时间轴,y看作点的运动轨迹。
在动力学中,如果把x看作梁的长度方向,y看作是振动幅度,那么sin(x)之类就是我们的基础振动模式,y就是最大的振动幅度,梁的运动过程就变成了这样。
对于线性动力系统,响应可以通过一系列基础振动模式组合叠加。
线性系统还有一个特点是线性变换。
举个简单的例子。
二维空间有两个基本的坐标轴:e1=(1,0)和e2=(0,1),那么空间中任意一点b可以通过e1和e2表示,假设b=(2,4),那么b=2*e1+4*e2;如果将坐标轴换一个,分别为e1’和e2’;e1’=(1,1)和e2’=(-1,1),那么b仍然可以通过e1’和e2’表示,b=3* e1’+1* e2’。
在线性空间里,我们把e1和e2叫做基;可以证明,N维空间内,或N自由度系统,任意一个点可以由任意N个轴将它描述出来;不过前提是N个轴是“线性无关”的,通常我们还会将它“正交化”和“归一化”;这里不展开讲,只是给予一个感官上的认识;具体可以参考线性代数教程。事实上,不仅向量,函数也可以做类似的操作,只不过是在泛函空间下实现的,在分布参数系统中会用到。
频率响应函数
线性叠加告诉我们一种处理线性动力系统的方法。但是,针对不同的载荷,每个模式在响应中的贡献大小是如何确定的呢?
模态分析是一种基于谱的分析方法,频域自然是其中非常重要的信息。频率响应函数或传递函数就是用来描述频域下输入和输出关系的。
想象一个线性系统
当给一个频率为w1的单位正弦信号输入,稳态输出幅值记为A1;给一系列的wi,输出一系列的幅值Ai;将横轴记为输入频率,纵轴记为输出幅值,构成了一个输入输出的曲线,这个曲线就是频率响应函数;频率响应函数描述的是系统输入和输出之间的关系;通常对于线性系统,输入和输出的频率是一致的。
图中凸起的部分代表了振动幅度大,对应的频率就是通常说的“共振点”。
一般来说,按照上述处理比较麻烦;事实上,将输入和输出分别做傅氏(拉氏)变换,再两者相除,即可得到频率响应函数;对于随机信号,也可以通过功率谱密度相除等方式得到。
有了这个频率响应函数后,不同激励条件下系统的响应就容易计算得到了。频率响应函数相当于告诉了我们,对于不同的激励,系统会如何响应,以及响应中每部分的贡献大小如何。
需要说明的是,一个频率响应函数描述的是一个输入点到一个输出点的关系,对于一个多自由度系统,可以通过一个频率响应函数矩阵描述。
最后
模态分析的相关数学内容先介绍这么多,下一篇文章中将会对模态分析进行详细讨论。
蒙特遇见卡罗:结构动力学中的模态分析(2) —— 实模态分析zhuanlan.zhihu.com-完-
公众号同步更新:数联科技工作室
公众号内有更多内容!