
作者:金钊 (中山大学) E-Mail: 980510243@qq.com
连享会-知乎推文列表
Note: 助教招聘信息请进入「课程主页」查看。
因果推断-内生性 专题 ⌚ 2020.11.12-15
主讲:王存同 (中央财经大学);司继春(上海对外经贸大学) 课程主页: https://gitee.com/arlionn/YG | 微信版

空间计量 专题 ⌚ 2020.12.10-13
主讲:杨海生 (中山大学);范巧 (兰州大学) 课程主页: https://gitee.com/arlionn/SP | 微信版

目录
- 1. 引言
- 2. 多元线性回归系数的常见误解
- 2.1 多元线性回归计量模型
- 2.2 多元线性回归系数的图形解释
- 2.3 多元线性回归系数的代数和矩阵解释
- 2.4 常见的错误解读
- 2.5 正确的解释
- 3. Stata 命令:margins 运用问题
- 4. 小结
- 参考文献
- 附:文中所用代码
- 课程一览
编者按: 在 Stata Journal ( 各期 SJ) 2016 年第 1 期中连续登载了 4 篇「 吵架」论文。其中,首篇为 David Hoaglin 撰写的长文 (p.5-22),题为「Regressions are Commonly Misinterpreted」。从标题上来看,这无异于「挑战」我们的常识。三位知名的计量经济学家 (James Hardin, Scott Long, David Drukker) 撰写了两篇短文对此进行评论/批评。而同期第四篇论文刊登的就是 David Hoaglin 的「反驳 (Rejoinder)」。显然,这四篇文章是 Stata Journal 的编辑们蓄意之作,同时,也凸显出此问题的重要性。本文对其中的一些核心观点进行梳理,感兴趣的读者可以阅读原文以便品尝原味红茶。
- Hoaglin David C., 2016, Regressions are Commonly Misinterpreted, Stata Journal, 16(1): 5–22. [PDF]
- Hardin James W. , 2016, Regressions are Commonly Misinterpreted: Comments on the Article, Stata Journal, 16(1): 23–24. [PDF]
- Long J. Scott, David M. Drukker, 2016, Regressions are Commonly Misinterpreted: Comments on the Article, Stata Journal, 16(1): 25–29. [PDF]
- Hoaglin David C., 2016, Regressions are Commonly Misinterpreted: A Rejoinder, Stata Journal, 16(1): 30–36. [PDF]
同主题阅读:
- 连享会 - 回归分析专题
- 图示线性回归系数:Frisch-Waugh定理与部分回归图
- 多元回归系数:我们都解释错了?
- 加入控制变量后结果悲催了!
- 如何比较解释变量的系数相对大小?
- R2分解:相对重要性分析 (Dominance Analysis)
- 残差是个宝:盈余管理、过度投资、超额收益怎么算?
1. 引言
多元回归模型一直被广泛运用,也是最常见和最基础的计量模型。多元回归模型中各个变量间关系相对复杂,其回归系数惯常解释为:
当其他变量保持不变或控制其他变量不变时,每改变一个单位时因变量
的平均变化量。
然而,Hoaglin (2016) 指出,这种常见的解读存在错误。这些问题常常出现在 OLS 回归、logistic 回归和其他广义线性模型以及生存分析、纵向分析和层次分析回归中。
Hoaglin (2016) 认为,这些解释既没有体现多元回归的基本原理,也不符合现实情况。他从图形、多元正态分布和最小二乘几何特征等角度解释「控制」和「保持不变」的不适性。为此,他们提出一直全新的解释「调整
2. 多元线性回归系数的常见误解
2.1 多元线性回归计量模型
我们常见的多元回归的总体 (population) 模型为:
其中,
在多元回归中,预测因子间不可能是完全独立的,每个回归系数的下标应该包含方程中的其他预测因子。为此,预测因子
运用数据可以对回归系数
2.2 多元线性回归系数的图形解释
我们运用 Stata 自带的 1978 汽车数据集 auto.dta 中的进口汽车 (foreign) 数据来解释多元回归系数估计值的含义。
首先,我们把汽车的百英里油耗 (100/mpg) 当作被响应变量,汽车的重量 (weight) 和排量 (displacement) 为预测因子。通过散点图 (图 1),我们可以看到汽车油耗与重量和排量的相关性很高,汽车的重量和排量的相关性也很强。
. sysuse auto, clear
(1978 Automobile Data)
. generate gp100m = 100/mpg
. label var gp100m "Gallons per 100 miles"
*-相关系数
. pwcorr gp100m weight displacement if foreign==1
| gp100m weight displa~t
-------------+---------------------------
gp100m | 1.0000
weight | 0.8172 1.0000
displacement | 0.8444 0.9507 1.0000
*-散点图矩阵
. graph matrix gp100m weight displacement if foreign==1

首先,我们看二元回归的估计结果如下,可以发现汽车重量回归系数的估计值为 0.396,而汽车排量回归系数的估计值为 0.032。
. regress gp100m weight displacement if foreign == 1
Source | SS df MS Number of obs = 22
----------+------------------------------ F(2, 19) = 23.86
Model | 19.6704568