sklearn svm 调参_【sklearn非线性回归预测】交叉验证评估与调参

# -*- coding: utf-8 -*-

"""

Created on Wed Mar 4 10:49:07 2020

@author: 85845

"""

import numpy as np

import dataprocess as dp # 自己写的数据预处理的模块

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.linear_model import

BayesianRidge, LinearRegression, ElasticNet

from sklearn.svm import SVR

from sklearn.ensemble.gradient_boosting

import GradientBoostingRegressor

import xgboost as xgb

from sklearn.model_selection import

cross_val_score

from sklearn.metrics import

explained_variance_score, mean_absolute_error, mean_squared_error, r2_score

# 评估指标介绍https://www.cnblogs.com/mdevelopment/p/9456486.html

# EV: 解释回归模型的方差得分,[0,1],接近1说明自变量越能解释因变量的方差变化

# MAE: 平均绝对误差,评估预测结果和真实数据集的接近程度的程度,越小越好

# MSE: 均方差,

计算拟合数据和原始数据对应样本点的误差的平方和的均值,越小越好

# R2: 判定系数,解释回归模型的方差得分,[0,1],接近1说明自变量越能解释因变量的方差变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值