# -*- coding: utf-8 -*-
"""
Created on Wed Mar 4 10:49:07 2020
@author: 85845
"""
import numpy as np
import dataprocess as dp # 自己写的数据预处理的模块
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import
BayesianRidge, LinearRegression, ElasticNet
from sklearn.svm import SVR
from sklearn.ensemble.gradient_boosting
import GradientBoostingRegressor
import xgboost as xgb
from sklearn.model_selection import
cross_val_score
from sklearn.metrics import
explained_variance_score, mean_absolute_error, mean_squared_error, r2_score
# 评估指标介绍https://www.cnblogs.com/mdevelopment/p/9456486.html
# EV: 解释回归模型的方差得分,[0,1],接近1说明自变量越能解释因变量的方差变化
# MAE: 平均绝对误差,评估预测结果和真实数据集的接近程度的程度,越小越好
# MSE: 均方差,
计算拟合数据和原始数据对应样本点的误差的平方和的均值,越小越好
# R2: 判定系数,解释回归模型的方差得分,[0,1],接近1说明自变量越能解释因变量的方差变化。