作者:忆臻 (哈工大SCIR实验室在读博士生)
魏福煊 哈工大英才实验班本科生
谢天宝 哈工大英才实验班本科生
一、前言
在我们要用pytorch构建自己的深度学习模型的时候,基本上都是下面这个流程步骤,写在这里让一些新手童鞋学习的时候有一个大局感觉,无论是从自己写,还是阅读他人代码,按照这个步骤思想(默念4大步骤,找数据定义、找model定义、(找损失函数、优化器定义),主循环代码逻辑),直接去找对应的代码块,会简单很多。
二、基本步骤思想
所有的深度学习模型过程都可以形式化如下图:
分为四大步骤:
1、输入处理模块 (X 输入数据,变成网络能够处理的Tensor类型)
2、模型构建模块 (主要负责从输入的数据,得到预测的y^, 这就是我们经常说的前向过程)
3、定义代价函数和优化器模块 (注意,前向过程只会得到模型预测的结果,并不会自动求导和更新,是由这个模块进行处理)
4、构建训练过程 (迭代训练过程,就是上图表情包的训练迭代过程)
这几个模块分别与上图的数字标号1,2,3,4进行一一对应!
三、实例讲解
知道了上面的宏观思想之后,后面给出每个模块稍微具体一点的解释和具体一个例子,再帮助大家熟悉对应的代码!
1.数据处理
对于数据处理,最为简单的⽅式就是将数据组织成为⼀个 。但许多训练需要⽤到mini-batch,直 接组织成Tensor不便于我们操作。pytorch为我们提供了Dataset和Dataloader两个类来方便的构建。
torch.utils.data.Dataset
继承Dataset 类需要override 以下⽅法:
torch.utils.data.DataLoader
torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False)
DataLoader Batch。如果选择shuffle = True,每⼀个epoch 后,mini-Batch batch_size 常⻅的使⽤⽅法如下:
2. 模型构建
所有的模型都需要继承torch.nn.Module , 需要实现以下⽅法:
其中forward() ⽅法是前向传播的过程。在实现模型时,我们不需要考虑反向传播。
3. 定义代价函数和优化器
这部分根据⾃⼰的需求去参照doc
4、构建训练过程
pytorch的训练循环⼤致如下:
下面再用一个简单例子,来巩固一下:
四、资源推荐
希望上面的讲解能帮助新手童鞋建立一个基本的代码逻辑轮廓,这里推荐几个我觉得很好的资源:
1、第一个是B站刘二大人的入门Pytorch视频,这是我见过入门最好的视频资源之一,强烈推荐,上面的例子slides也均来自于此,地址如下
https://www.bilibili.com/video/BV1Y7411d7Ys?p=6
2、其实入门之后,就不用看太多学习资料了,你是搞哪个方向的,推荐直接去看一下相关方向顶会论文实现,从配环境、debug看懂他的code,到调参到他论文的相近结果,功力会针对性提高很多。
希望文章对一些新手朋友有帮助~
往期精彩回顾
适合初学者入门人工智能的路线及资料下载
机器学习及深度学习笔记等资料打印
机器学习在线手册
深度学习笔记专辑
《统计学习方法》的代码复现专辑
AI基础下载
机器学习的数学基础专辑
获取一折本站知识星球优惠券,复制链接直接打开:
https://t.zsxq.com/yFQV7am
本站qq群1003271085。
加入微信群请扫码进群: