python狗图像识别_用 Python 图像识别打造一个小狗分类器

本文介绍了如何使用Keras构建一个小狗品种分类器,涉及数据集的准备、预处理、卷积神经网络的搭建、训练及预测。通过爬取并整理京巴、拉布拉多、柯基、泰迪四类小狗的图片,进行监督学习,最终实现模型训练,测试集准确率为0.7。文章还展示了模型防止过拟合的策略,并提供了预测新图片的代码示例。
摘要由CSDN通过智能技术生成

项目介绍

小狗分类器可以做什么?

通过这个分类器,你只需要上传照片,就可以得到小狗的品种,以及更多的信息。

这就是所谓的「机器学习」,让机器自己去“学习”。我们今天要做的这个分类任务,是一个“监督学习”的过程。

监督学习的主要目标是从有标签的训练数据中学习模型,以便对未知或未来的数据做出预测。

我给大家讲一个例子。

用“房子的尺寸”预测“房子的价格”

图片来自(吴恩达-机器学习)

X-房子的尺寸(小狗的图片)

Y-房子的价格(小狗的类别)

如图,我们根据已经有的数据集(图上的坐标),可以拟合出一条近似符合规律的直线。

这样,再有新的房子尺寸(1250),我们就可以估算出房子的价格(220k)了。

有了这些简单的基础,可以开始搞了。

效果展示

训练集的准确率为0.925,但测试集只有0.7

说明过拟合了,可以再增加一些图片,或者使用数据增强,来减少过拟合。

测试了两张图片,全都识别对了!

编写思路

整个分类器的实现,可以分为以下几个部分:

1 准备数据集

我们可以通过爬虫技术,把4类图像(京巴、拉布拉多、柯基、泰迪)保存到本地。总共有840张图片做训练集,188张图片做测试集。

2 数据集的预处理

1) 统一尺寸为100*100*3(RGB彩色图像)

# 统一尺寸的核心代码

img = Image.open(img_path)

new_img = img.resize((100, 100), Image.BILINEAR)

new_img.save(os.path.join('./dog_kinds_after/' + dog_name, jpgfile))

2) 由于数据是自己下载的,需要制作标签(label),可提取图像名称的第一个数字作为类别。(重命名图片)

kind = 0

# 遍历京巴的文件夹

images = os.listdir(images_path)

for name in images:

image_path = images_path + '/'

os.rename(image_path + name, image_path + str(kind) +'_' + name.split('.')[0]+'.jpg')

3)划分数据集

840张图片做训练集,188张图片做测试集。

4)把图片转换为网络需要的类型

# 只放了训练集的代码,测试集一样操作。

ima_train = os.listdir('./train')

# 图片其实就是一个矩阵(每一个像素都是0-255之间的数)(100*100*3)

# 1.把图片转换为矩阵

def read_train_image(filename):

img = Image.open('./train/' + filename).convert('RGB')

return np.array(img)

x_train = []

# 2.把所有的图片矩阵放在一个列表里 (840, 100, 100, 3)

for i in ima_train:

x_train.append(read_train_image(i))

x_train = np.array(x_train)

# 3.提取kind类别作为标签

y_train = []

for filename in ima_train:

y_train.append(int(filename.split('_')[0]))

# 标签(0/1/2/3)(840,)

y_train = np.array(y_train)

# 我是因为重命名图片为(1/2/3/4),所以都减了1

# 为了能够转化为独热矩阵

y_train = y_train - 1

# 4.把标签转换为独热矩阵

# 将类别信息转换为独热码的形式(独热码有利于神经网络的训练)

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

print(y_test)

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

print(x_train.shape)  # (840, 100, 100, 3)

print(y_train.shape)  # (840,)

3 搭建卷积神经网络

Keras是基于TensorFlow的深度学习库,是由纯Python编写而成的高层神经网络API,也仅支持Python开发。

它是为了支持快速实践而对Tensorflow的再次封装,让我们可以不用关注过多的底层细节,能够把想法快速转换为结果。

# 1.搭建模型(类似于VGG,直接拿来用就行)

model = Sequential()

# 这里搭建的卷积层共有32个卷积核,卷积核大小为3*3,采用relu的激活方式。

# input_shape,字面意思就是输入数据的维度。

#这里使用序贯模型,比较容易理解

#序贯模型就像搭积木一样,将神经网络一层一层往上搭上去

model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))

model.add(Conv2D(32, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

#dropout层可以防止过拟合,每次有25%的数据将被抛弃

model.add(Flatten())

model.add(Dense(256, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(4, activation='softmax'))

4 训练

训练的过程,就是最优解的过程。

对上图来说,就是根据数据集,不断的迭代,找到一条最近似的直线(y = kx + b),把参数k,b保存下来,预测的时候直接加载。

# 编译模型

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

# 一共进行32轮

# 也就是说840张图片,每次训练10张,相当于一共训练84次

model.fit(x_train, y_train, batch_size=10, epochs=32)

# 保存权重文件(也就是相当于“房价问题的k和b两个参数”)

model.save_weights('./dog_weights.h5', overwrite=True)

# 评估模型

score = model.evaluate(x_test, y_test, batch_size=10)

print(score)

5 预测

此时k、b(参数)和x(小狗的图像)都是已知的了,求k(类别)就完了。

# 1.上传图片

name = input('上传图片的名称(例如:XX.jpg)为:')

# 2.预处理图片(代码省略)

# 3.加载权重文件

model.load_weights('dog_weights.h5')

# 4.预测类别

classes = model.predict_classes(x_test)[0]

target = ['京巴', '拉布拉多', '柯基', '泰迪']

# 3-泰迪 2-柯基 1-拉布拉多 0-京巴

# 5.打印结果

print("识别结果为:" + target[classes])

依赖环境

1 深度学习框架Keras和TensorFlow

2 PIL扩展库(预处理图片)

3 Pycharm/Jupyter notebook

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值