边缘计算的发展
内容分发网络
边缘计算的概念最早追溯到20世纪90年代,Akamai公司为解决网络带宽小、用户访问量大且不均匀等问题,提出了内容分发网络CDN(Content Delivery Network)技术。CDN通过增加缓存服务器来实现内容服务,将边缘服务器设置在靠近用户的网络边缘。用户的请求会被定向到离用户最近且负载低的节点上,提高了用户访问的响应速度,尤其在视频音频等流媒体服务上有效保证了服务质量。CDN边缘服务器面向的是内容转发,而边缘计算节点面向的是数据处理。云计算
2007年,IBM和Google宣布在云计算领域开展合作后,云计算逐渐成为学术界和工业界的研究热点。伯克利云计算白皮书对云计算的定义是:云计算包括互联网上的各种服务形式的应用及数据中心中提供这些服务的软硬件设施,云分为公有云和私有云。云计算系统具有支持虚拟化、保证服务质量、高可靠性和扩展性等特点。对于终端设备计算资源有限的问题,云计算提供的解决方案是通过在远程高性能的计算服务器上执行应用程序,并通过网络与云服务器进行交互。但是,这种架构也存在局限性,如网络时延波动大、网络带宽有限、传输成本高、数据安全和隐私问题等。Cloudlet
2009年,Satyanarayanan等提出了基于Cloudlet的体系架构,Cloudnet是一种受信任、资源丰富的计算机集群,分散并广泛分布,其计算和存储资源可以被附近的移动计算机所使用。把云服务器的计算迁移到靠近用户的Cloudlet上,通过移动终端与Cludnet的近距离交互降低网络时延并提高服务质量。雾计算
2011年思科首次提出了雾计算的概念,它通过在移动设备和云之间引入一个中间雾层来扩展云计算。中间雾层由部署在移动设备附近的雾服务器构成,雾服务器是一种具有数据存储、计算和通信功能的虚拟设备。雾计算将少量的计算、存储和通信资源放在移动设备的附近,通过本地的短距离无线连接,为移动用户提供快速服务。通过基于位置分布的雾服务器,雾计算解决了云计算无法感知位置和高延迟等问题。边缘计算
在学术界,2016年5月,施巍松教授第一次给出了边缘计算的正式定义: 边缘计算是指在网络边缘进行计算的技术,边缘定义为数据源和云数据中心之间的任一计算和网络资源节点。理论上,边缘计算应该在数据源附近进行计算分析和处理。2016年10月,ACM和IEEE联合举办边缘计算顶级会议(IEEE/ACM Symposiumon Edge Computing),截至2019年3月已经举办过三届。SEC2016收录了11篇论文, 主要研究了架构实施、身份验证、边缘传感器和编程可行性等领域。Liu等提出了一种特定的提供计算和存储资源的边缘计算平台———Para Drop,将WIFI接入点(AP)和无线网关作为网络边缘,实现敏感数据本地化处理从而保护了用户隐私、WIFI接入网络延迟低、互联网上传数据量低等优点。Nastic等提出了一个支持IoT云端多级配置的中间件,为物联网云系统的多级配置提供了全面的支持。Echeverria等提出了一种基于安全密钥生成和交换的边缘节点身份验证方法,用于在断开连接的环境中如战术环境下建立可信身份。2017年10月,第二届会议SEC2017收录了20篇论文,主要研究了 边缘计算在车辆上的应用、边缘计算的管理和应用、迁移、表现和评估、视频分析、框架等议题。在车辆领域中,会议重点关注如何借助边缘计算来解决人员流动分析、驾驶员区分和交通流量问题。Qi等提出了Trellis———一种基于WiFi的低成本的汽车监控和跟踪系统,基于运行在车辆上的边缘的计算平台,该系统提供有关车内外人员的各种分析和运输系统中乘客的活动趋势。在迁移领域中,会议主要研究了如何高效透明地进行边缘服务器或虚拟机的迁移。Ma等提出了一种基于Docker容器的边缘服务器迁移方法,通过容器迁移来实现服务迁移,利用分层存储系统来减小文件系统的同步开销。2018年10月,第三届会议SEC2018收录了23篇论文,呈现逐年递增的趋势。本次会议包含六大议题: 支持边缘应用、隐私安全、边缘视频、边缘计算和物联网、基础设施和云边交互。这六大议题表达了边缘计算的发展现状和未来趋势,如第一个议题研究了边缘计算在时下流行的VR和车辆驾驶中的应用,在VR应用中可以明显降低边缘云的计算负担,在车辆驾驶应用中可以在车辆行驶过程中近乎实时检测出危险事件;第二个议题关注了边缘计算带来的潜在的隐私和安全问题,通过引入适用于家庭环境的隐私感知智能中心HomePad进行管控、引入vigilia实现Java语法赋予权限管控、引入差分隐私机制对神经网络训练进行管控等措施来提升边缘计算的安全性。ICDCS、INFOCOM、ICFEC等其他国际会议同样开始聚焦边缘计算,增加边缘计算的分会或专题研讨会。其中通信领域顶级会议INFOCOM 收录边缘计算方向的论文逐年增加,从2016年的8篇到2018年的29篇。 在工业界,随着物联网、大数据、人工智能、5G通信等技术的快速发展,边缘计算也逐渐兴起。 在国外,2015年9月,欧洲电信标准化协会ETSI发表了关于移动边缘计算的白皮书;同年11月思科、ARM、戴尔、英特尔、微软和普林斯顿大学联合成立Openfog联盟;2017年3月ETSI将移动边缘计算行业规范工作组正式更名为多接入边缘计算。国际标准组织物联网标准分技术委员会ISO/IECJTC1SC41成立了边缘计算研究小组。2018年1月,首本边缘计算专业书籍《边缘计算》正式出版,其从边缘计算的需求与意义、边缘计算基础、边缘计算典型应用、边缘计算系统平台、边缘计算的挑战、边缘计算系统实例以及边缘计算安全与隐私保护等多个方面对边缘计算进行了阐述。2018年2月,OpenStack基金会正式发布了《边缘计算-跨越传统数据中心》白皮书,阐述了边缘计算所面临的机遇和挑战。 在国内,边缘计算同样发展迅速 。2016年11月,华为技术有限公司、中国科学院沈阳自动化研究所、中国信息通信研究院、因特尔、ARM等在北京成立了边缘计算产业联盟(Edge Computing Consortium, ECC),旨在搭建边缘计算产业合作平台,推动运营技术和信息与通讯技术开放协作;2018年9月,在上海召开的世界人工智能大会上,举办了以“边缘计算,智能未来”为主题的边缘智能主题论坛。2019年2月,世界移动通信大会MWC2019上边缘计算成为了热门话题,中国移动联合中国电信、中国联通及产业链合作伙伴发布了OTII边缘定制服务器,推动建设移动边缘计算MEC。 边缘计算的架构EdgeX Foundry
2017年4月,Linux基金组织启动了开源项目EdgeX Foundry,旨在创建物联网边缘计算标准化的通用框架。EdgeX Foundry的设计有如下原则:架构设计与平台无关,可以运行在不同的硬件操作系统上;架构设计非常灵活,支持替换、升级或扩充平台的任何组件;架构设计提供存储和转发功能,以解决延迟执行和远程执行的延迟和存储问题;边缘设备部署安全且易于管理。Edgex Foundry是一组微服务集合,具体可划分为4个服务层和2个基础系统服务,EdgeXFoundty的架构设计如图1所示。 其中服务层包括核心服务层、支持服务层、导出服务层和设备服务层,基础系统服务包括安全和系统管理。在官方文档中架构图被划分为南侧和北侧。南侧指物理领域内的所有物联网对象,以及与这些设备、传感器等直接通信的网络边缘;北侧指对数据收集、存储、聚合、分析和通信的云层。EdgeX Foundry是一个中立于供应商的开源项目,由一系列的耦合、开源的微服务模块组成,用于构建即插即用、模块化的物联网边缘计算生态系统,推进市场统一和物联网部署。边缘计算参考架构3.0
2018年11月,边缘计算产业联盟ECC与工业互联网产业联盟AII联合发布了《边缘计算参考架构3.0》。文中指出了制造、电力、交通、医疗等行业的智能化时代已经到来,当前行业智能发展遇到的挑战主要有:操作技术和信息交流技术的协同问题、数据的集成问题、知识模型化问题、数据端到端的流动问题。面对行业智能化的挑战,边缘计算产业联盟认为边缘计算需攻克四大关键技术:通过数字孪生,在数字世界建立物理资产的实时映像,建立物理世界和数字世界的联接与互动;通过集成人、物、本地系统、云等协作,构建以模型驱动的智能分布式架构平台;提供开发、部署、运营的端到端服务框架;实现云计算和边缘计算的能力协同。边缘计算产业联盟提出了边缘计算参考框架,如图2所示。 边缘计算三层架构模式包括云计算层、边缘层和现场层。其中,云计算层提供智能化生产、个性化定制等应用程序支持,它接收来自边缘层的数据进行分析处理,并且对边缘层和现场设备进行调度优化;边缘层是整个参考框架的核心部分,由边缘管理器、边缘节点、边缘网关、边缘控制器、边缘云、边缘传感器等部分组成,向上支持与云计算层的数据传输,向下支持与现场设备的接入。现场设备层包括传感器等具体设备,通过现场总线或以太网与边缘层进行连接,进行数据流和控制流的交互。文中从商业角度、应用的业务流程角度、服务和功能角度、部署实现角度对参考架构进行了详细全面的描述和介绍。OpenEdge
2018年12月,ABC Inspire企业智能大会上,百度正式发布国内首个开源边缘计算平台Open Edge,该平台提供设备接入、消息路由、消息远程同步、函数计算、设备信息上报、配置下发等功能。Open Edge和智能边缘BIE云端管理套件配合使用,以满足各种边缘计算的应用场景。Open Edge主要由主程序模块、Hub模块、远程MQTT模块、函数管理模块组成。其中,主程序是Open Edge系统的核心,负责管理所有其他模块,由Restful API和引擎系统构成,Restful API提供获取空闲端口、获取系统信息和状态、更新系统和服务、实例的启动或停止、引擎系统负责实例启停和守护等接口,来实现服务的不同运行模式,支持Docker容器模式和Native进程模式。Hub模块提供基于MQTT(Message Queuing Telemetry Transport)的消息路由服务,服务边缘设备内部的数据交互。远程MQTT模块提供Hub和远程MQTT服务进行消息同步的服务,负责边缘设备和云端的数据交互。函数管理模块提供了函数计算服务,负责用户自定义的边缘计算任务的执行和管理。 资料来源:网络 云智芯 整理发布 转载请注明来源和出处 (本文仅出于传递信息的目的,如若侵犯了您的合法权益,请及时联系删除)