裂项求和是数列求和的一种重要方法.但由于对等差数列求和的倒序相加法和对等比数列(差比数列)的错位相减法的深(根)入(深)人(蒂)心(固),我几乎都忽略了裂项求和也可以应用于这些基本数列的求和.
例1.求和:\[2+5+8+\cdots+3n-1.\] 对通项进行裂项:\[3n-1=(an^2+bn)-\left[a(n-1)^2+b(n-1)\right]=2an-a+b,\]其中\(a,b\)为待定系数. 易得\[a=\frac 32,b=\frac 12.\] 于是\[2+5+8+\cdots+3n-1=\frac 32n^2+\frac 12n.\]
例2.求和:\[3+3^2+3^3+\cdots+3^n.\] 对通项进行裂项\[3^n=a\cdot 3^n-a\cdot 3^{n-1}=\frac{2a}3\cdot 3^n,\]其中\(a\)为待定系数. 易得\[a=\frac 32.\] 于是\[3+3^2+3^3+\cdots+3^n=\frac 32\cdot 3^n-\frac 32.\]
例3.求和\[1\cdot 2+3\cdot 2^2+5\cdot 2^3+\cdots+(2n-1)\cdot 2^n.\] 对通项进行裂项\[\begin{split}(2n-1)\cdot 2^n&=(an+b)\cdot 2^n-\left[a(n-1)+b\right]\cdot 2^{n-1}\\&=\left(\frac a2\cdot n+\frac{a}2+\frac{b}2\right)\cdot 2^n,\end{split}\]其中\(a,b\)为待定系数. 易得\[a=4,b=-6.\] 于是\[1\cdot 2+3\cdot 2^2+5\cdot 2^3+\cdots+(2n-1)\cdot 2^n=(4n-6)\cdot 2^n+6.\]
例4.求和\[1\cdot 2+2^2\cdot 2^2+3^2\cdot 2^3+\cdots+n^2\cdot 2^n.\] 对通项进行裂项\[\begin{split}n^2\cdot 2^n&=(an^2+bn+c)\cdot 2^n-\left[a(n-1)^2+b(n-1)+c\right]\cdot 2^{n-1}\\&=\left[\frac a2\cdot n^2+\left(a+\frac b2\right)n-\frac a2+\frac b2+\frac c2\right]\cdot 2^n,\end{split}\]其中\(a,b,c\)为待定系数. 易得\[a=2,b=-4,c=6.\] 于是\[1\cdot 2+2^2\cdot 2^2+3^2\cdot 2^3+\cdots+n^2\cdot 2^n=(2n^2-4n+6)\cdot 2^n-6.\]
综上所述,用待定系数裂项法求差比数列(甚至是高阶差比数列)的前$n$项和非常简便,尤其是算完待定系数之后无需整理,可谓居家旅行杀人越货之利器也.