点到直线的投影公式_MIT—线性代数笔记16 投影矩阵和最小二乘法

2575680a38137c65e5a0227c21f649a3.png

第16讲 投影矩阵和最小二乘法

Projection matrices and least squares

网易公开课​open.163.com
fbc4cfd33a2514501f8aaaf8d24ad6e0.png
  • 投影 Projections

上一讲介绍了投影矩阵

,当它作用于向量
b,相当于把 b投影到矩阵 A的列空间。

如果向量b本身就在A列空间之内,即存在x使得Ax=b,则有:

如果向量bA的列空间正交,即向量b在矩阵A的左零空间N(A)中,则有

562ff930ec1ab6ff0c82f61afb62df30.png
  • 最小二乘法 Least Squares

应用投影矩阵求方程组最优解的方法,最常用于“最小二乘法”拟合曲线。

658772732c13b4c883f02b4cda5861fd.png

三个点{(1,1), (2,2), (3,2)},求直线方程b=C+Dt,要求直线尽量接近于三个点。

C+ D=1

C+2D=2

C+3D=2


矩阵形式为

这个的方程Ax=b是无解的,解决办法就是求其最优解,最优解的含义即为误差最小,这里误差就是每个方程误差值的平方和

,因此就是寻找具有最小误差平方和的解
x,这就是所谓的“最小二乘”问题。

41fe3c0143ee5431396bf59955bcc167.png

从几何上讨论求解过程,就是试图寻找数据点到直线距离的平方和

最小的情况,此时得到的C+Dt分别为p1,p2和p3,它们是满足方程并最接近于
b的结果。另一种看法是,对于 R3空间上的向量 b,它投影到矩阵 A的列空间中会得到向量 p=[p1 p2 p3],投影到矩阵 A的零空间中则为 e

现在求解

p

方程

16701992d924d9f79afaeb1c19e02564.png

还可以从误差最小的角度出发求解:

对等号右边的表达式求偏导数,极值出现在偏导数为0的位置。求偏导最终会得到相同的线性方程组和相同的解。

得到直线表达式y=2/3+t/2。将t=1, 2, 3分别代入可得:

07af988ace20cae4b9aa7bcbeec75f5d.png

可以验证,向量pe正交,并且e与矩阵A的列空间正交。

  • 矩阵

证明:若A的列向量线性无关时,矩阵

为可逆矩阵。

假设存在x使得

。则有
,因此
Ax= 0。因为 A的列向量线性无关,所以只有当 x= 0时有 Ax= 0。因此只有当 x= 0时有
。即矩阵
为可逆矩阵。

如果矩阵的列向量是互相垂直的单位向量,则它们一定是线性无关的。我们将这种向量称之为标准正交(orthonormal)。

例如:

。还有
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值