三维空间:点到线的距离,点到面上的投影,直线在平面上的投影直线方程(平面束)

本文介绍了高等数学中点到线的距离、点到面的距离以及直线在平面上投影的计算方法。通过解方程组找到直线上的点,利用几何向量求解距离,并展示了直线在平面的投影直线方程的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        你好哦,这里是云切月斩(Echo_Fish),本文章如果能加深你对于高等数学知识点的理解,那么我将不胜荣幸!如果本文章存在错误请不吝赐教!

        一、点到线的距离(已知一个点和直线的一般式)

已知点P(3,-1,2)

已知直线(两个平面联立 就会出现一条交线 这种类型的方程组叫做直线的一般式):
x + y - z + 1 = 0,
2x - y + z - 4 = 0

        方法一:我们把目光投向直线方程。

                       第一步:设x = 1,然后我们就可以得到一个y和z关系的方程组。

y - z = -2
-y + z = 2

                        然后很容易就能得出 y = 0,z = 2。加上之前的x = 1,我们就得到了该直线上的一个点(1,0,2)我们称它为N点。

                        第二步:结合已知点P ,求出向量PN,注意是向量PN(下文以加粗字体PN表示),PN = (1-3  ,  0-(-1)  ,  2-2) 即(-2,1,0)。

                        第三步:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值