python斐波那契数列递归算法的时间复杂度推导_斐波那契数列两种算法的时间复杂度...

博客围绕斐波那契数列展开,介绍其定义与应用。针对求解斐波那契数列 F(n) 的递归和非递归两种常用算法,详细给出代码并分析时间复杂度。递归算法因重复计算,时间复杂度为 O(2^n);非递归算法避免重复计算,时间复杂度为 O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是2018王道数据结构考研复习指导的第一章思维拓展的题目。

关于斐波那契数列的简介:

斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

具体题目:

求解斐波那契数列的F(n)有两种常用算法:递归算法和非递归算法。试分析两种算法的时间复杂度。

1.递归算法

1 #include

2 using namespacestd;3

4 long Fibonacci(intn) {5 if (n == 0)6 return 0;7 else if (n == 1)8 return 1;9 else

10 return Fibonacci(n - 1) + Fibonacci(n-2);11 }12

13 intmain() {14 cout << "Enter an integer number:" <>N;17 cout << Fibonacci(N) <

时间复杂度分析:

求解F(n),必须先计算F(n-1)和F(n-2),计算F(n-1)和F(n-2),又必须先计算F(n-3)和F(n-4)。。。。。。以此类推,直至必须先计算F(1)和F(0),然后逆推得到F(n-1)和F(n-2)的结果,从而得到F(n)要计算很多重复的值,在时间上造成了很大的浪费,算法的时间复杂度随着N的增大呈现指数增长,时间的复杂度为O(2^n),即2的n次方

2.非递归算法

1 #include

2 using namespacestd;3

4 long Fibonacci(intn) {5 if (n <= 2)6 return 1;7 else{8 long num1 = 1;9 long num2 = 1;10 for (int i = 2;i < n - 1;i++) {11 num2 = num1 +num2;12 num1 = num2 -num1;13 }14 return num1 +num2;15 }16 }17

18 intmain() {19 cout << "Enter an integer number:" <>N;22 cout << Fibonacci(N) <

时间复杂度分析:

从n(>2)开始计算,用F(n-1)和F(n-2)两个数相加求出结果,这样就避免了大量的重复计算,它的效率比递归算法快得多,算法的时间复杂度与n成正比,即算法的时间复杂度为O(n).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值