python做销售额预测_Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析...

原标题:Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

原文链接:http://tecdat.cn/?p=17748

在数据科学学习之旅中,我经常处理日常工作中的时间序列数据集,并据此做出预测。

我将通过以下步骤:

探索性数据分析(EDA)

问题定义(我们要解决什么)

变量识别(我们拥有什么数据)

单变量分析(了解数据集中的每个字段)

多元分析(了解不同领域和目标之间的相互作用)

缺失值处理

离群值处理

变量转换

预测建模

LSTM

XGBoost

问题定义

我们在两个不同的表中提供了商店的以下信息:

商店:每个商店的ID

销售:特定日期的营业额(我们的目标变量)

客户:特定日期的客户数量

StateHoliday:假日

SchoolHoliday:学校假期

StoreType:4个不同的商店:a,b,c,d

CompetitionDistance:到最近的竞争对手商店的距离(以米为单位)

CompetitionOpenSince [月/年]:提供最近的竞争对手开放的大致年份和月份

促销:当天促销与否

Promo2:Promo2是某些商店的连续和连续促销:0 =商店不参与,1 =商店正在参与

PromoInterval:描述促销启动的连续区间,并指定重新开始促销的月份。

利用所有这些信息,我们预测未来6周的销售量。

# 让我们导入EDA所需的库:

import numpy as np # 线性代数

import pandas as pd # 数据处理,CSV文件I / O导入(例如pd.read_csv)

import matplotlib.pyplot as plt

import seaborn as sns

from datetime import datetime

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值